
WBS Manual
Version 1.6

SK Knudson

May 23, 2013

Copyright c©2010-11 Stephen K Knudson. All rights reserved,

This document and the accompanying computer files are distributed in the hope that each will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

1

Contents

1 Introduction 4

2 Purpose 4
A scoring tool . 4
Scoring versus grading . 5
Side Effect . 5

3 Web Based Scoring in Operation 6
From the Point of View of an Individual Student 6
From the Point of View of the Instructor . 6

4 Why bother with computerized scoring? 7
Motivation and Goals . 7

5 Requirements 7

6 Installation 8
Installation Overview . 8
In the box . 9

7 Configuration: Data Submission Files 10
Introduction . 10
Editing a database file . 10
Configure three files . 11
Appearance . 16

8 Configuration: Scoring Student Data 16
What can be scored? . 18
How to instruct WBS to score . 19
What can’t be scored? . 22
Other Options . 22

9 Technical Details 22
Introduction . 22
Design Principles . 23
A quick primer on the use of php files . 24

A Screens for Data Submission 27
Wbsindex.html . 27
Selections.php . 28
Gatherdata.php . 29
Storedata.php . 30

B Computer Requirements 32

2

C Version 1.6 33

3

1 Introduction

This manual provides complete instructions for the installation and use of WBS, a free
web based tool for scoring student laboratory reports, supplementing the instructor’s grad-
ing.

In next section, we discuss in more detail the purpose of WBS. The third section describes
how WBS works, first from the point of view of the student and then from that of the
instructor. Overall installation instructions are contained in the following section, with
detailed descriptions of the various steps concluding the body of this manual.

Screens seen by students during the submission process are presented as figures in Appendix
A, and a summary of computer and software requirements is presented in Appendix B.
The requirements are minimal, as the software was developed with the intention that it be
universally available, at least to educational institutions in the US and Canada.

2 Purpose

A scoring tool

WBS provides the laboratory instructor with a free tool offering rapid, accurate, and uni-
form scoring of student reported data, presumptively in a laboratory setting. For those
skeptical about computer scoring, it may be important to emphasize that this may not
be what you expect. WBS is not a fancy multiple choice machine. Rather, it should be
regarded as a tool specialized for the science laboratory, where accurate measurement, cal-
culation, and reporting are emphasized and therefore checked. As it is designed to minimize
tedium and ensure accuracy, it also allows instructors to devote more time to instruction
than marking routine aspects of student papers. While WBS is not intended to replace
professional judgements, it does incorporate profession judgement via its implementation of
your scoring key. With this approach, WBS is not intended to provide a grade, but rather
to provide a score as one component of the grading.

The approach provides support for the instructor in a laboratory setting, regardless of the
manner in which the course is presented, since all courses require students to make measure-
ments, carry out calculations, and report results. Data-driven aspects of these stages can be
scored.

The target placement for WBS is a lower division science laboratory with multiple sections
and multiple teaching assistants. The approach addresses

• courses with large numbers of students. The instructor in courses with only a few
students can carry out the tasks without the assistance of the product.

• grading uniformity across all sections. Students generally accept the notion that com-
puter scoring is carried out in an unbiased manner, and that their interaction with

4

laboratory personnel has no influence on the score. And we are all taught to believe
that the computer is accurate; in this case, it is as accurate as the information provided
by the instructor. While we have found teaching assistants to be conscientious, and
willing to follow a grading key, individual differences do turn up; this should not be a
surprise.

In any event, WBS eliminates even the perception that the student would have been
better off in a different section as far as the scoring is concerned.

• rapid return of scored laboratory reports to students. We think it important to provide
this information to students before the day of the next laboratory experience, so that
they can be informed if technique or calculations or any other similar aspect of the
laboratory report needs to be considered. A well-written report on improperly handled
data is fundamentaly flawed.

Scoring versus grading

We have already attempted to make a distinction between scoring and grading a laboratory
report. We mean the latter to be the assignment of a grade based on the student’s work,
regardless of the form of the submitted material. As such, the grade reflects the professional
judgement of the instructor.

We mean the term scoring to refer to marking some of the mundane but important informa-
tion gathered by the student. This takes special importance in the laboratory setting, where
the student is expected to make and record measurements accurately, to carry out calcu-
lations based on those measurements, and to report information correctly. However, when
hundreds of students are submitting weekly reports, the task of organizing and checking this
material becomes large, especially since some of the data submitted can legitimately vary
from student to student.

Side Effect

In the operation of WBS student data is collected in a database for the laboratory. This
data may be examined for purposes other than scoring individual reports, in particular to
determine if the experiment as implemented is meeting its pedagogical goals.

We are aware of only one other approach similar to this, WebMark[?]. It appears to be less
general and less flexible than the current offering.

To understand what WBS does and does not do, we next present it in operation.

5

3 Web Based Scoring in Operation

In this section we examine WBS from an operational point of view. First we consider how
each student interacts with WBS during or at the end of the laboratory experience. Then
we consider how the instructor interacts following the laboratory.

From the Point of View of an Individual Student

At the completion of the experiment, the student uses a web browser to load a specified
PHP file, wbsindex.html; the rendition is shown below and more legibly in Figure 2.

Welcome

to web based scoring of laboratory data. You
may either

submit data you recorded during the
laboratory experiment, or
look up scoring of your earlier submission.

Simply click on the appropriate radio button
below, then click on the button labeled
“Continue”.

 Submit lab data
 Check your score

Continue [Press (click) the button to the

left to continue]

(The acronym “PHP” is discussed below; by default,
such files are loaded by a web browser.) This file pro-
vides student access to WBS throughout the term,
so it may for example be bookmarked. In response
to prompts, the student logins, specifies his/her sec-
tion, and selects the appropriate experiment from a
list. Next, and again in response to prompts, a stu-
dent submits selected experimental data and results.
This submission is echoed to the student for confirma-
tion or correction; upon confirmation, the data (and
name of the student) are stored in a database. The
data submission process does not take students long.
All of these screens are shown in Appendix A.

Several days later the student may, starting from that
same file, use a browser to find out the scored results
for the specified experiment. Thus, the student need
bookmark only one (1) file for the duration of the
course.

From the Point of View of the Instruc-
tor

To obtain scores, the instructor or designate simply loads a specified PHP file, the same file
name for each experiment, in a web browser. This initiates the instructor version of the
scoring program. Specification of the section and experiment returns an alphabetical list of
students and scores for that section or, optionally, all sections.

A flowchart of program operation is given in Figure 1 on page 17.

6

4 Why bother with computerized scoring?

Motivation and Goals

We can only speak to what motivated us in the academic environment here. As seems to
be common, we operate large enrollment chemistry labs, divided into many sections, with
a teaching assistant (TA), under faculty supervision, being the primary person in the lab.
In our institution both undergraduate and graduate students serve as TAs. Prior to the use
of WBS, TAs also carried out the scoring function; we found them to be conscientious and
skilled. Nonetheless, there was some variability in scoring standards which were difficult to
address with written and verbal instructions. In addition, especially toward the end of a
term, the time requirements for scoring sometimes became a burden on the TAs. It is also
true that some TAs felt that the scoring aspect made them more responsible for the course
and consequently to the students.

What can be scored by WBS? In the current version of the program, the attributes of data
which may be scored include

• the number of decimal places in a response;

• the number of significant figures in a response;

• the accuracy of a response, including unknowns;

• the accuracy of a calculation based on submitted raw data;

• the accuracy of a response in comparison with a class average or median;

We would anticipate that many other items can be scored, including chemical formula (re-
member: lower division labs). Additional scoring capabilities will be added to future versions
of the application; suggestions for what to score will speed up the inclusion of any particular
feature.

SInce these responses will be scored accurately, instructors may focus on experimental tech-
nique and guiding student calculations. Students understand that the scoring is conducted
impartially, and that the accuracy of the result matters. This encourages students to employ
careful techniques to improve submitted results.

5 Requirements

There are some requirements which must be satisfied before WBS will work properly. How-
ever, these requirements are minimal and are probably already in place at your institu-
tion.

1. Web Server supporting PHP and MySQL. Installation of WBS requires the
cooperation of the people who operate the web server in your institution, be it at the
departmental or some higher level. The cooperation is needed in several ways. For

7

convenience, we will refer to these people using the currently popular acronym IT. IT
must offer both PHP and MySQL. Both are already installed at many institutions,
so there may be no additional technical costs. Both programs are (as of this writing)
available at no cost to academic institutions, so there should be no actual financial
burden either. Students must have access to a computer offering a browser, preferably
during the laboratory meeting at which measurements are taken, although they could
report the data after lab.

2. Web Forms. WBS involves the use of web forms ; the server must be configured to
handle these in the proper fashion. Forms are commonly processed by web servers, so
server configurations normally permit these.

3. MySQL access. Access to a MySQL database secured with a password must be
arranged.

4. Student logins. since students submit material which is scored, the application
expects students to login to their account, in a PHP file. Again, this is common
practice at most institutions, but details differ from place to place. Consultation with
your IT department is therefore required. This is the ONLY technically demanding
part of the installation.

5. File system structure and access. Components of the application (i.e., files) are
to be installed in several directories which must be accessible by your web server but
NOT by students. These files are just text files, not executables themselves, which
should reassure your IT consultants.

An example is actually simpler to understand than the wording above. At one institu-
tion all the files in the tar file are installed in a single location, just as they come from
the tar file. The main directory (wbs) is under the hierarchy of files for the department
in general. A link to the initial student file (location/wbs/studentfiles/wbsindex.html)
is placed on the main web page for the lab course. Access to all other files used by
students is then automatic.

You may wish to bookmark the initial scoring file (location/wbs/adming/ireport.php)
for the individual(s) responsible for record keeping.

And, of course, sufficient disk space. Disk requirements are not large.

6 Installation

Installation Overview

1. Download the compressed file of your choice, either wbs.tar.gz or wbs.zip. The
content of each is identical, and includes text files and this manual in pdf format.

2. expand the distribution file wbs.tar.gz or wbs.zip, whichever you are using. The
resulting files must be located so that the web server can see them but students cannot.

8

See item# 5 above.

3. make the changes indicated in the files dbgnames.php, dbexpts.php, dbdataitems.php.
More detailed descriptions of these changes are given below.

4. set up one file with the name specificXX.php for each experiment for which web
based scoring is to be implemented. In this name the letter ’XX’ are to be replaced by
the code established in dbexpts.php Each of these files is independent of the others,
so they may be implemented individually rather than all at once. No such file need be
generated for experiments in which WBS is not used.

In the box

The box — the compressed file referred to in the first step above — contains files in a
number of subdirectories. Three subdirectories referred to frequently in this manual are
named studentfiles, adming, and dblocal, but two of these names may be changed at
your convenience. The web server used at your institution needs to be able to read the files
in this directory, that is, all the subdirectories. (Well, actually, the browser never needs to
use the subdirectory with the manual, but it won’t hurt if the server could see files there.)
You as the WBS administrator need read and write access as well. Students do not need
access to any of the subdirectories except through the browser, and should not have access
to any of these files. Another subdirectory, cssfiles, contains style files, which affect the
appearance only.

To repeat, students must NOT be able even to read files in adming or in dblocal, and do
not need read access to any wbs files or directories; only the web server (and the instructor)
needs read access. In the normal course of operation, students will be able to see the
directory and file names, so access to the directories other than via the web server must not
be possible. Furthermore, the password to the database containing scoring information is
contained here, so scoring security would be compromised if a student were able to read the
files. We recommend that access to the files be limited to those with a need to administer
the scoring.

Expansion of the compressed file will generate the subdirectories. You may then rename
adming, & studentfiles as you wish, but the current version of WBS does not allow for
alternate names for other subdirectories. This allows the opportunity to change the name of
either or both of these two subdirectories.

cssfiles contains several files required for the appearance of the html files.

dbfiles, dblocal These subdirectories contain files which are accessed only indirectly, and
not called explicitly; see Figure 1. Each must be readable by your web server, but,
like adming itself, must NOT be accessible to students in any manner.

adming contains some of the files used for scoring of student submissions.

Student laboratory data submissions are collected by the sequence of files shown in Figure
1 below. That is, wbsindex.html leads to a sequence of php files; students need only know

9

the name wbsindex.html, as the other names are hard coded into each file. Thus, if you
wish for some reason change the name of any of these files, you would need to modify the
files. This directory also contains several auxiliary files used by the php files:

• instuct.popup.html

• instructgather.popup.html

.

7 Configuration: Data Submission Files

Introduction

You need to configure WBS for the experiments which make up your course; we offer detailed
instructions to guide you through the configuration process. This process is described here
and in section 8.

Configuration is by far the most tedious part of the installation exercise. In our experience
it takes about twenty (20) minutes per experiment; spread out over a semester this is not
too onerous, and it needs to be done only before first use of a given experiment. This phase
is where some pedagogical decisions are made, so perhaps it is appropriate that this is the
time-consuming part.

While this step can be time consuming, it does not require any programming skills to com-
plete. It does call upon your judgement of what data your students should be submitting
in order to get a score. In our own experience, all of these decisions have already been
made and indeed codified in order to provide an answer key or a grading guide for the
graders. It then only remains to transfer this into the proper format. In carrying out this
task, reference to the screens generated by the sample cases provided will make the task
much easier.

In the next section we describe the process of editing a file, and saving it while retaining the
proper formatting (which is no formatting). In the third section we offer detailed, specific
descriptions of the changes to be made. A brief final section is at this point of development
basically a placeholder for what the user needs to do to change the appearance of the various
pages. We have tried to make the manual completely self-explanatory, but perhaps we have
on occasion missed the mark. Please do not hesitate to contact us if you find the manual
confusing or (horrors) wrong.

Editing a database file

In the next section, you are instructed to supply certain values specific to your institution.
In this section, we attempt to explain editing a file, which is the way in which you enter
these values.

10

The word ’database’ appears in the title to the section because it describes the manner in
which WBS handles this information. The kind of data the user needs to provide ranges
from essentially trivial (the name of the experiment) to those involving pedagogical decisions
(e.g., which data students are to submit). In our applications, we request from students
only data which is already in the laboratory manual or worksheet, and we recommend this
practice. This approach also means that requests for items to be submitted have already
been expressed in the laboratory manual itself.

In order to supply this information, it is necessary to edit a file. This means to change the
contents of a file and save the change(s). A requirement is that the file be saved as a plain
text file, which in turns means that it be saved without any of the extra formatting such as
that which most word processing programs (e.g., Word) insert into a file. There are many
programs which can be used for editing (e.g., Notepad, Wordpad, and many others) and
indeed most word processors, including Word, can save files as simple text files, although
not normally by default. Please note that a rich text formatted file (.RTF, .rtf) is NOT a
plain text file.

The files for which you provide values need to have a .php suffix. If it is necessary or
convenient to save it with some other suffix (e.g., .txt), be sure to change it back to the
.php suffix.

The specific changes which you make to configure a file are documented in the next section.
We have also tried to provide the appropriate instructions in the files themselves. This is
done by adding comments (characters that are NOT computer commands or data, but are
instead intended to be human readable) into the file. In HTML, a comment begins with the
characters <!-- and ends with the characters -->. In PHP, there are two ways to place a
comment. One is to put in a double slash (// this is a comment). The double slash itself
and everything which follows to the end of the line is ignored by the PHP processor, and
so is intended for the humans looking at the file. The second kind of comment starts with
the two characters /* and ends with a */. The difference is that this second form permits a
comment to extend over multiple lines.
/* this is

also a comment */.
Since there are lots of comments in the files, this should make the task of configuring the
files properly easier.

Configure three files

Three files require attention; they are: dbgnames.php, dbexpts.php, and dbdataitems.php.
All are located in the dblocal subdirectory. The first, dbgnames.php, provides general
information about the course. This will rarely need updating after its initial configura-
tion. The second, dbexpts.php, provides general information about each experiment for
which WBS is to be used. This will need updating as experiments change. The third file,
dbdataitems.php, specifies to the students the information which each is to report to WBS.
The editing is explained in detail next.

11

dbgnames.php

This file contains details for your institution, and undoubtedly some editing will be required.
However, the first few lines of the file should not be changed, and only those edits described
here should be made.

The first change to be made occurs in the segment of the code shown here:

A few lines from dbgnames.php

/∗
∗ f i l e : dbgnames . php
∗ USER EDITS s t a r t here
∗
∗ The f o l l o w i n g 7 items need to be s e t to va lue s appropr ia te f o r your
∗ i n s t i t u t i o n / course
∗ r e p l a c e the c h a r a c t e r s Chem 100 with the course ID ; t h i s appears in
∗ the t i t l e pr in ted on each page . See f i g u r e 1 .
∗ You may a l s o note the use o f double quotes ra the r than s i n g l e ; the
∗ d i f f e r e n c e i s not important .
∗ I f you don ’ t change i t , the course number w i l l appear as Chem 100
∗/

$Crsenum=’Chem 100 ’ ;

The code segment above contains mainly comment lines, which are ignored by the computer.
The final line shown stores the course number. The user is to replace the default value listed,
Chem 100, with the appropriate course number. Please notice that all variable names in
PHP begin with a dollar sign character, and each statement terminates with a semicolon. In
addition, please note the presence of paired single quotes. After user edits, the single quotes
and the terminal semicolon must remain. If the course is in the physics department with
number 110L, then the line might read
$Crsenum=’Physics 110L’;

after editing. There are no special restrictions; more than 8 characters may be employed, for
example. While many characters might detract from the appearance of a page, it will not
impact the operation of the code.

The next few lines of the code are

/∗
∗ Item 2 . Spec i f y the number o f s e c t i o n s in the term .
∗ Replace 20 with the number at your i n s t i t u t i o n
∗/

$tnumsec =20;

Again, comment lines are followed by the actual item to be edited. When submitting exper-
imental data, students select their own section number from a list with maximum set by this
value, and the administrative user may request scores for all sections at one time. Notice

12

that this value is NOT enclosed in single quotes, as the value is a number rather than a
string of characters. But the statement still requires a terminal semicolon.

Two more items follow in the same format. The user specifies the number of experiments
in line 30, and the number of days delay before a student may view his/her score in line 35.
This value should be a small integer, and is intended to protect the integrity of unknowns
when multiple sections are also spread across multiple days. It should be set low enough
that scores are available to students before their next laboratory. It may be set to zero, but
then students may see scores immediately. Such an approach has advantages, but in WBS,
students may submit data as often as they wish. This avoids issues concerning typing errors,
as students are always presented the data exactly as submitted before the data is saved for
scoring.

Three additional items remain to be specified, all associated with the MySQL database server
which stores student submitted values. The required information, in the order found in the
file, is the name of the server, the user name, and user password, stored in the variables
$sqlserver, $sqlid, $sqlpwd, as shown in the file.

/∗
∗ Items 5−7. Parameters f o r the MySQL database .
∗ r e p l a c e l o c a l h o s t with name o f the s e r v e r
∗ The ’ l o c a l h o s t ’ d e f a u l t must be changed
∗/

$ s q l s e r v e r =’ l o c a l h o s t ’ ;
// s p e c i f y the s q l username and password
$ s q l i d =’ root ’ ; // r e p l a c e root with s q l username
$sqlpwd=’ root ’ ; // r e p l a c e root with s q l password

Note that all three of these are character strings, enclosed in single quotes. The server name
is normally in the standard URL form, something like http://sqlserver.uruniv.edu. This
name may be as long as is needed. The user name must be provided to you by the people
in charge of the server at your institution; we encourage you to use some name other than
root. Your IT folks may appreciate knowing that the parameters appear in the line

$ l i n k = mysql connect ($ s q l s e r v e r , $ sq l i d , $sqlpwd) ;
i f (! $ l i n k) {

d i e (’ Could not connect to MySQLserver : ’ . mysq l e r ro r () . $omsg) ;

and nowhere else.

This information is secure in the file, so long as students do not have access to the dblocal

directory. The information is not contained in any form in the web page which uses
dbgnames.php, so long as the php file is not changed except for the edits required here.
However, it is necessary that the file be protected from unauthorized access; even the file
names should not be available outside of those installing and editing the files.

A summary of the required course information is present in Table 1.

13

Table 1: Required installation specific parameters
line # Code Variable Purpose

20 $Crsenum specify course ID
25 $tnumsec number of sections in the course
30 $tnumexpt number of experiments in the course
35 $daysdelay minimum days a student may be view score
41 $sqlserver name of mysql server
43 $sqlid userid for the sql server
44 $sqlpwd password for the sql server

Nine (9) additional items which follow may be optionally changed. The final seven of these
affect the appearance of the web pages. These parameters, $Ticlr, $Ditembg, etc., specify
certain colors used in the application. I recommend leaving them for now, so your screens
will look just like the figures here, but then feel free to change them to your own taste.
Documentation is not currently available. Other lines of code should not be changed.

dbexpts.php

In this file the user must supply identifying information for each experiment. Each experi-
ment is independent, and missing entries for one experiment have no effect on another, so
experiments may be entered as needed. In the sample file provided the values described
below are arranged by experiment. All items to be changed follow the line
//User changes below

which, being in a php portion of the file, is a comment. The file provided includes a complete
set of information as used at one university at one time. There is no expectation that the
values will be useful to you; they are included merely for illustrative purposes. It would be
best to save the supplied file with a different name for reference purposes, and replace the
values here with the values for your course.

A few lines from the file are

// −−−−−−−−−−−−−−−−− EXP #3 Conservat ion o f Mass −−−−−−−−−−−−−−−−−
$e r e fno =3; // i n t e g e r by which expt r e f e r e n c e d
$abbrev=’MA’ ; // symbol by which expt r e f e r e n c e d
$ename [$abbrev]= ’Mass Re lat ions ’ ; // TITLE
$eabbrev [$e r e fno]=$abbrev ;
$nod [$abbrev]=6;

They items needing your attention (for EACH experiment) are

$erefno =n, where n is simply the sequence number of each experiment, the order in
which the experiment is performed, beginning with 1 and ending with the value of
$tnumexpt as provided in dbgnames.php. This is not provided automatically because
it could change from term to term. The user needs to specify only the integer value
following the equal sign.

14

$abbrev= ′XX′ , where the user must replace the characters XX with a unique, two
character abbreviation which identifies a particular experiment. This information is
a string, not a number as the preceding case, and in php must be enclosed in quote
marks, as in the examples.
This seems to duplicate the $erefno information, but the sequential order of exper-
iments might vary from term to term, while our intent is that the abbreviation be
permanent. The default abbreviations in the file are unique and may be left as is, but
the intent is for the abbreviation to serve the programmer as a short mnemonic for the
specified experiment.
This value must be specified before the ones which follow.

$ename[$abbrev]=’title’ is the title of the experiment, preferably the same as the title
in the laboratory manual. For our purposes, single quotes are generally preferred, but
double quotes will work, too. Again, the user replaces only the five characters inside
the quotes with the title of choice, which may be more than 5 characters. It is displayed
to the student on each web page during the submission process.

$nod[$abbrev] = n, where n is to be replaced with the number of data items requested
of students for that experiment. The value must be a non-negative integer. Each
sequence number should be specified; set $nod=0 to skip a given experiment. In this
case no further values for the experiment need be specified, but students will benefit
if the title is still specified. In this example, the value assigned is 5, which means that
students will encounter requests for 5 pieces of data. What the requests are the user
specifies in dbdataitems.php, described below.

$eabbrev[$erefno]=$abbrev should be included for each experiment to be used in WBS.

No other items in the file need to be changed. Indeed they should not be changed.

Finally, we note that each experiment stands alone, so that if the file has information only
for experiments 1, 3, and 9, the application works fine for experiments 1, 3, and 9.

Table 2: Required Experiment Parameters
Code variable Purpose

$abbrev unique two character identifier
$erefno sequential order of the experiment
$ename title of the experiment

$nod number of data items to be submitted by students

dbdataitems.php

This file contains the requests for student data for all of the experiments, $nod items for
each experiment, as specified by the user. Each request is an entry in a single, large PHP
array. There is no expectation that any of the specifications in the sample file will be of any
use to the user; they are included purely as examples. The format is straightforward; we

15

include a few lines from the sample file for reference:

”OX1”=>”best value , molar i ty KMnO₄”,
”OX2”=>”best value , molar i ty H₂O₂”,
”OX3”=>”% H₂O₂”,

Each line contains two items enclosed in double quotes, separated by two symbols: =>. The
first item begins with the mnemonic ($abbrev) assigned to the experiment, followed by the
integer sequence number of the request. In the example, the mnemonic is OX, and nod
was specified as 3, so the entries are OX1, OX2, and OX3. There must be no blanks in the
characters to the left of the ’=>’. These three or four characters are enclosed in the first set
of double quotes. This is followed by the two characters =>. The second item is the text of
the request enclosed in double quotes. This text will be presented to the students, as shown
in Figure A.

Please note that the request may contain HTML code. In this example units are indicated
by changing the color to green; also, a simple chemical formulas are rendered properly with
subscripts. Superscripts may be presented similarly, with ^{and} enclosing the
superscript.

This is some work, but the real effort is in determining the information which should be
requested of the students.

Summary for dbdataitems.php: specify values for the array.

Appearance

The appearance (fonts, colors) of WBS is determined by Cascading Style Sheet (css) files
located in the css directory. At the moment the user has a choice of only one style; perhaps
this can be increased in future if there is interest. Of course, the user may alter the style
sheets as desired.

8 Configuration: Scoring Student Data

A second set of programs scores the data submitted by students. The sequence of scoring
files is shown in Figure 1 .

As shown in the figure, scoring begins by browsing to the file ireport.php in the appropriate
directory. The initial screen offers three choices to the user. The one of interest here is the
default choice, Scoring. Thus, all the user need do to score is click the submit button. The
remaining options are explained below in subsection “Other Options” on page 22.

All the real work is done by the code contained in the file named scorengine.php; it
should not be modified unless the user is thoroughly familiar with the coding. Of course,

16

Figure 1: Flowchart of program operation. Data submission follows the leftmost sequence.
Instructor scoring follows the rightmost. Score reporting to a student starts in upper
left and flows across at the dot-dash line. Please note that the files scorehead.php and
ascorehead.php are stubs which define a single parameter and then use scorengine.php,
which does all the work of scoring.

17

each experiment has different data and is graded uniquely; these conditions are brought
into the code via the configuration specified separately for each experiment in the a named
specificXX.php, where XX stands for the mnemonic specified in the previous section. Thus,
if nine experiments are to be scored by WBS, there must be nine files with the proper, unique
choices for XX. This section is concerned with the generation of these files. Several examples
of actual configuration files are included with the distribution, and a further file, actually
named specificXX.php, contains an example of each type of scoring possible in the current
version.

Thus, setting up the configuration is straight-forward. As in the case of the data submission
configuration, one file is needed for each experiment, so it is admittedly somewhat tedious.
And also as in the experiment configuration files, the non-existence of a specificXX.php file
for one experiment will not impede the operation of scoring for other experiments.

In our own implementation of WBS, we made essentially none of these decisions; rather,
we simply accepted the decisions which had been made for scoring by hand, based on the
keys provided for TA graders. We recommend this approach as a good way to start.

In this context, it is unnecessary to request that all items recorded in the laboratory notebook
be submitted via the WBS system; only those data items which must be graded themselves
are requested. In addition, we also require those items which are needed for the scoring of
other items; that is to say, we can and do use the computer to check calculations. It seems
to us that this is a true advantage of the computerized scoring compared to manual scoring,
unless your TA’s have the time and take the care to check calculations themselves (good for
you and them).

There is however no inherent limit in the number of items requested or graded in the WBS
programs. As an example, in one of the last experiments of the term, students are to
determine the concentration of an unknown; we request only two items from the student,
(1) the unknown number and (2) the concentration. In an earlier (and easier) experiment,
we ask for eight (8) items and score them all.

What can be scored?

We think virtually anything that can be put on the scoring key.

Numeric input

For any piece of numerical data, in the current version the following can be marked:

1. number of decimal places

2. number of significant digits. At least, based on our definition of significant digits. It
might be useful to give our rules:

(a) any digit in a number is a significant digit, except

18

(b) a leading zero

This is the simplest definition of which we are aware, and avoids all arcana.

3. value of a result, compared to

(a) a prespecified value;

(b) or a value computed from other submitted data;

(c) or a value based on a class “average”

In each case, the result is not a simple right or wrong, but rather a gradation based
upon the difference between the student’s reported value and the “correct” value.

The author has been informed by faculty much more skilled at the evaluation of analytical
results that scoring of unknowns based on concentration or the equivalent is a very difficult
undertaking, because there are a number of variables difficult to control in the student
laboratory setting. These extend down to the level of insufficient mixing of unknowns by
laboratory faculty or staff. WBS gives the instructor the option to look at all student
results, and to compare the results for an individual with the whole set of student results.
We have found this to be effective.

Non-numeric input

Actually, we haven’t tried this yet. But there is certainly no reason that a simple chemical
formula, for example, could not be scored.

How to instruct WBS to score

The files specificXX.php, located in the administrative subdirectory, contain the details of
what is to be scored, and how it is to be scored. First, and most easily, the characters ’XX’
in the file name are to be replaced with the mnemonic used for a given experiment; these
are capital letters if you define the mnemonic with capitals. Thus, eventually you will need
to generate one file for each experiment. There is actually a file named specificXX.php in
the distribution; this files contains a template of each type of scoring in the current version
of WBS.

The specificXX.php files which you create should be located in the dblocal directory.

Again, I recommend opening one of the example files while reading these instructions. In
fact, these remarks are tailored to one of the examples provided, specificO2.php.

Each item submitted by students may be marked on the basis of any or all of the “attributes”
listed belowed. By default, each attribute is turned off, and so ignored (not marked for that
attribute) unless specifically turned on by the user. For example, line # 8 of specificO2.php
turns on marking of decimal places for the second item submitted by students.

19

$k = 2 ; // s p e c i f y s c o r i n g a t t r i b u t e s f o r the second item
$ck dec [$k] = True ; // check # of decimal p l a c e s o f the second item

$k having being assigned the value 2 in the preceeding line. Each available attribute may
be turned on in a similar fashion.

The attributes available in the current version are:

number of decimal places In our manual, the proper number of decimal places required
is often stated explicitly. Or it may be implicitly defined by an instrument. For
example, since we use typical top-loading balances with covers, three decimal places
are appropriate for masses in grams. The number of decimal places for a proper
response must be specified; the complete configuration is

Table 3: Configuration parameters for decimal place attribute
variable set to comment

$k integer: item # identifies which submitted value in question
$ck dec[$k] True set True to score decimal places for item #k
$ndcp[$k] varies integer; correct number of decimal places
$wtckd[$k] varies deduction if incorrect # of decimals reported

$lmsgckd[$k] a brief message printed when student checks score; e.g., ’ in the volume’
preface incorrect # of decimal places

Here, as in the following tables,“preface” refers to a short message preceeding $lmsgckd
or the corresponding variable for the other attrbutes.

number of significant digits The number of significant digits in a response may be de-
termined and compared to the number reported by the student. We use the definition
that any and all digits (including zeroes) reported are significant, except leading zeroes,
in order to handle values less than one in specified units. The complete configuration
is

Table 4: Configuration parameters for significant digit attribute
variable set to comment

$k integer: item # identifies which submitted value in question
$ck sf[$k] True set True to mark significant digits for item #k
$nsf[$k] varies integer; correct number of significant digits

$wtnsf[$k] varies deduction if incorrect # reported
$lmsgnsf[$k] a brief message printed when student checks score; e.g., ’ for molar mass’

preface Incorrect # of significant digits

accuracy Any item submitted may be checked for accuracy by comparison with a pre-
defined value. The complete set of configuration parameters is given in Table 5.
Implementation of scoring for accuracy was originally based on a deduction based

20

Table 5: Configuration parameters for accuracy attribute
variable set to comment

$k integer: item # identifies which submitted value in question
$ck acc[$k] True set True to score accuracy of item #k
$corval[$k] varies correct value
$scalef[$k] 1 used to control deduction

$mxdeduct acc[$k] varies maximum deduction
$lmsacc[$k] a brief message printed when student checks score; default value:

in accuracy

on predetermined ranges. It was found easier to present this in the form

deduction =

(
|xarg − corval|

scalef

)1.25

rounded to an integer. The power 1.25 in the formula means that the deduction grows
more rapidly than linearly as the size of the error increases. The factor scalef deter-
mines the size of the deduction. The factor mxdeduct acc determines the maximum
possible deduction. A figure is provided to allow the user to estimate reasonable values
for this quantity to put WBS in close agreement with current scoring scheme. Of
course, if a more sophisticated analytic method is used, that could be coded into the
application, and WBS would be happy to assist in the implementation of any such.

It is also possible to score based on accuracy if the correct value is not known, but if
the correct value can be based on something like the median value, to help account for
year to year variations in solutions, environmental samples, and the like. This requires
only a little more work for the user.

value of an unknown is handled as a separate attribute, but has many of the same fea-
tures as scoring for accuracy. The main difference is that a table relating unknown #
to result must be constructed; see the example. It occurs inside a function of the name
specified in the example.

Table 6: Configuration parameters for unknown attribute

variable set to comment
$k integer: item # identifies which submitted value in question

$ck unk[$k] True set True to score unknown value of item #k
$unkid varies item which request unknown identification value

$mxdeduct unk[$k] varies maximum deduction
$lmsgunk[$k] a brief message printed when student checks score

computation Often, students are requested to compute a value (the molar volume of oxy-
gen at STP, for example). The result may well be implicit in data submitted. The
application may be instructed to compute the value correctly, and take a deduction

21

should the value provided by the student be incorrect. The properly computed value
may then be used to check for accuracy.

Table 7: Configuration parameters for computation attribute
variable set to comment

$k integer: item # identifies which submitted value in question
$ck comp[$k] True set True to score computed value of item #k
$compenalty varies deduction
$lmscomp[$k] a brief message printed when student checks score

value compared to class average involves (in this version) more configuration parame-
ters than any other attribute.

What can’t be scored?

There is probably a long list. For example, we require that students use ink to complete the
“laboratory notebook” and require that incorrect entries be legibly struck out with a single
line and the correct entry made nearby. At one time we scored student papers about these
matters, which do not translate nicely to WBS. We no longer score on this basis, but rather
ask TA’s to check on this and have students make corrections as the TA moves around the
laboratory. This works at least as well, if not better, than scoring these attributes.

Other Options

The initial instructor screen (ireport.php) presents three options to the user, selected by
clicking the appropriate radio buttion. The first and default option (Scoring) is to score lab
reports for one or all sections, as explained above. The other options allow the user to verify
his configuration of WBS as described in Section 7 and Section 8.

The second option, (Verification), prints out the cconfiguration items not specific to a given
experiment, such as the course name and number. The third option, (Test), prints out the
configuration for a given experiment, including requests for data input which WBS will
present to the students.

9 Technical Details

Introduction

The section of the manual is NOT needed either for installation or for operation. Rather,
it is for programmers who wish to see how the coding works. It may also be used by those

22

who wish to extend capability, which can be done easily by adding the appropriate PHP
functions and/or calls.

Design Principles

Every experiment is different, seeking to expound different experimental techniques to stu-
dents, and to illustrate different scientific principles in support of lectures. After several false
starts, we concluded that attempting to construct a suite of programs was a maintenance
nightmare, and not feasible, at least not here. Instead we found it possible to have one “pro-
gram”, controlled by external databases which provide the specialization needed. After all,
checking the number of decimal places or the number of significant figures does not depend
on the chemistry of the experiment.

As mentioned above, by the word “program”, we generally mean a suite of one or more
PHP files which carry out a specific task. The files are typically web forms which call other
files in a specific sequence. For example, the data collection “program” consists of one plain
html and four PHP files. We list them in Table 8 to be specific This approach also ensures

Table 8: Data Collection Program Files
wbsindex.html welcome screen; submit data or check score
selection.php form collects student login, lab section, and experiment ID
gatherdata.php collects experimental data
storedata.php echos data for verification or correction by student
wbslogout.php logs out student, stores data in MySQL file, reloads selection.php

that the student is presented which the same format every week, so that an initial lack of
familiarity can be rapidly overcome.

The program requests that students supply data, always in exactly the manner in which it
is entered in the standard report. Thus, the use of WBS requires data submission, but no
additional experimentation or calculation on the part of the student. All student data is
stored in the form of a string of characters, even though most or all of the data is numerical
in character. This ensures that all data stored and available to the scoring program and the
grader is exactly what the student typed.

Known Bugs

1. the method to acquire user names is flimsy, and will not work properly if the username
contains a blank (e.g., Van der Waals).

23

Notes on Functions

chkacc(xarg, corval, scalef, maxdeduct, lmsg)

Purpose

Determine a deduction based on how close xarg is to corval;

Arguments:

scalef must be positive

Definition

chkarg =

(
|xarg − corval|

scalef

)1.25

Output

The function returns a integer value between 0 and the value supplied for maxdeduct, inclu-
sively. The value of the function reaches 10 when |xarg−corval|

scalef
≈ 6.1, as may be seen from the

figure. This should be used to guide the user in determining the proper value of scalef.

Please see the related function chkacc2 which can provide a steeper (or less steep) increase
with the size of the error.

A quick primer on the use of php files

Here we give a brief explanation of the design issues involved with use of php files. A
(dot)PHP files is meant to be handled by a web server, much in the same way that a
(dot)html file is handled. There is an important difference; the PHP file is first treated by
a preprocessor. A PHP file may contain html commands; these are simply emitted to the
web browser which called up the PHP file. So if a (dot)PHP file contains nothing other than
html statements, the result is identical to that elicited by a (dot)html file, except for the
wasted processor time used by the server.

The point of a PHP file is to contain PHP specific statements, which are treated according to
the rules of the PHP language. The PHP statements are themselves NOT SENT to the web
browser which called up the PHP file. Instead, only those items explicitly sent by specific
PHP statements are sent. Thus, a PHP file may contain a password, but that password is
not visible to the user of the web browser (unless, of course, the person writing the PHP file
foolishly sends it to the browser).

24

In the files provided here, PHP files not only contain passwords, but they carry out calcu-
lations and comparisons, based on the data supplied by the students and by the instruc-
tor.

Examples often make things clearer. The first file listed below in an appendix, wbsindex.html,
contains no PHP statements, as the suffix indicates. This short file does show a simple form
in use (if you can squint hard enough to read it).

<!DOCTYPE html>
<head>

<meta name=”generator ” content=
”HTML Tidy f o r Mac OS X (ver s 31 October 2006 − Apple Inc . bu i ld 1 5 . 3 . 6) , s ee www.w3 . org ” />
<t i t l e >WBS Welcome page</ t i t l e >
<meta http−equiv=”Content−Type” content=”text /html ; cha r s e t=us−a s c i i ” />
<l i n k r e l=”s t y l e s h e e t ” type=”text / c s s ” h r e f =”. ./ c s s f i l e s / form . c s s ” />

</head>

<body>
<h2>Welcome</h2>

<p>to web based s co r i ng o f l abora to ry data . You may e i the r </p>

< l i >submit data you recorded during the l abora to ry experiment ,
or</ l i >

< l i >look up s co r i ng o f your e a r l i e r submiss ion .</ l i >

<p>Simply c l i c k on the appropr ia te rad io button below , then c l i c k
on the button l abe l ed &ldquo ; Continue&rdquo ;.</p>

<form name=”form0” method=”post ” ac t i on=” s e l e c t i o n s . php” id=”forma”>
<p><input type=”rad io ” name=”sorg ” value=”data in ” checked=
”checked” /> Submit lab data

<input type=”rad io ” name=”sorg ” value=”student ” /> Check your
score
</p>

<p><input type=”submit” name=”Submit” value=”Continue”
c l a s s=”button” />
[Press (c l i c k) the button to the l e f t to cont inue]</p>
</form>
<!−− <p><f ont s i z e=3>Copyright 2010 WBS Enterpr i s e s −−>

</body>
</html>

The second file, selections.php, does contain PHP statements, flagged to the server by
being enclosed by “<?php” and “? >” characters.

<!DOCTYPE html>
<head>

<meta name=”generator ” content=
”HTML Tidy f o r Mac OS X (ver s 31 October 2006 − Apple Inc . bu i ld 1 5 . 3 . 6) , s ee www.w3 . org ” />
<meta http−equiv=”Content−Type” content=”text /html ; cha r s e t=us−a s c i i ” />
<t i t l e >WBS Login , S e l e c t Lab</ t i t l e >
<l i n k r e l=”s t y l e s h e e t ” type=”text / c s s ” h r e f =”. ./ c s s f i l e s / form . c s s ” />
<s c r i p t type=”text / j a v a s c r i p t ” s r c=”popup . j s ”></s c r i p t>

</head>

<body>
<!−−

second f i l e in the data c o l l e c t i o n proce s s
gather s course , s e c t i on , and experiment #
named output : f i r s tname , lastname , sec , expt , sorg

−−>

<h2><?php
$m=’ does not e x i s t . E i ther r e i n s t a l l WBS or contact the wbs webmaster .</h2> ’ ;
d e f i n e (” D i r e c t c a l l ” , t rue) ;

(@include ’ . . / s p e c i a l s / checkorder . php ’) OR die (’<h2>The f i l e ckorder ’ . $m) ;
$t= ckorder (’ wbsindex ’) OR DIE($ord msg) ; // k i l l i f improper c a l l e r

(@include ’dbgnm . php ’) OR die (’ the f i l e g ’ . $m) ; // gene ra l d e f s
(@include ’ dbgexpts . php ’) OR die (’ the f i l e ex ’ . $m) ; // expt names

//Grab the posted data
$which = $ POST [’ sorg ’] ; // p o s s i b l e va lues o f $which : datain , student
echo ”<!−− Input value : $which −−>\n ” ;

i f ($which==’datain ’){
$gree t=’Submission ’ ;
$ f i l ename=’ gatherdata . php ’ ;

25

} e l s e i f ($which==’student ’){
$gree t=’Scoring ’ ;
$ f i l ename=”scorehead . php ” ;

} e l s e {
d ie (’Oops . You seem to have stumbled on t h i s f i l e by mistake .

Perhaps you wanted <a h r e f=”wbsindex . html”>th i s ’) ;
}

echo ”$Crsenum Labs

Web $gree t f o r Experiments</h2>\n ” ;

$uid=po s i x g e tu i d () ; $u in fo=pos ix getpwuid ($uid) ; / / p r i n t r ($u in fo)
$fu l lname=$uin fo [gecos] ;
echo ”<!−− user name i s $fu l lname −−>\n ” ;
$eullname=explode (” ” , $ fu l lname) ; / / p r i n t r ($eullname)
$fname=$eullname [0] ;
$lname=$eullname [1] ;
$tmp=$ SERVER[’DOCUMENTROOT’] ; echo ”<!−− doc root $tmp −−>\n ” ;
$tmp=$ SERVER[’PATH INFO ’] ; echo ”<!−− path i n f o $tmp −−>\n ” ;
$tmp=$ SERVER[’HTTP HOST’] ; echo ”<!−− http host $tmp −−>\n ” ;

echo ’< form name=”form1” method=”post ” ac t i on =” ’. $ f i l ename . ’ ” id=‘form1 ‘ > ’ .”\n ” ;

// submit f i r s t & l a s t names to the form , no blanks in l a s t name
/∗
∗ r ep l a c e with rawurlencode

echo ”\n<input type=hidden name=lastname value =\””;
$nmelength=s t r l e n ($lname) ; // echo ”<p> # chars in l a s t name i s : $nmelength ” ;
f o r ($ i =0; $i<$nmelength ; $ i++) {

$tc=$lname [$ i] ;
i f ($lname [$ i]===” ”) $tc=” ” ;
echo $tc ;

}
echo ”\”>\n ” ;
echo ”< input type=hidden name=f i r sname value=\”$fname\”>\n ” ;
∗/
echo ”\n<input type=hidden name=lastname value =\””. rawurlencode ($lname).”\”>\n ” ;
echo ”< input type=hidden name=f i r s tname value =\””. rawurlencode ($fname).”\”>\n ” ;
echo ”< input type=hidden name=sorg value=$which>\n ” ;
echo ”< input type=hidden name=output value=’html ’>\n ” ;

echo ”<p>Hello , ” . $fname .” ” . $lname . ” . ” ;
?> Please s e l e c t the proper entry in each column:</h2>

< f i e l d s e t >
<l egend c l a s s=”c1”>Lab Sect ion # and Experiment #</legend>

<p>Sect ion : <s e l e c t name=”sec ” s i z e =”4” c l a s s=” s l c t l i s t ”>
<?php
f o r ($ i =1; $i<=$tnumsec ; $ i++) {
echo ’<opt ion value =” ’. $ i . ’” ’ .” > $ i \n ” ;
}
?>

</s e l e c t> Experiment <s e l e c t name=”expt ” s i z e =”4” c l a s s=” s l c t l i s t ”>
<?php
f o r ($ i =1; $i<=$tnumexpt ; $ i++) {

$e id=$eabbrev [$ i] ;
echo ’<opt ion value =” ’. $e id . ’” ’ .” > $ i $ename [$e id] \n ” ;

}
?>

</s e l e c t ></p>
</ f i e l d s e t >

<p>[Press (c l i c k) the button to cont inue] <input type=”submit”
name=”Continue” value=”Continue” /></p>

<p>(Cl i ck <a h r e f=” i n s t r u c t . popup . html” onc l i c k=
” return popup (th i s , ’ i n s t r u c t i on s ’)”>here i f you wish to
review bas i c i n s t r u c t i o n s .) spacing
<?php echo $cn ; ?></p>

</body>
</html>

The user (a student) is asked to select both a section number and the experiment for which
data is to be submitted. The file does NOT check to make sure that the student has
made valid selections. All student input, as read by the computer and including the section
number supplied on this page, is echoed on a confirmation page, which affords the student
the opportunity to correct any miscommunication.

26

Appendix A Screens for Data Submission

Wbsindex.html

Welcome

to web based scoring of laboratory data. You
may either

submit data you recorded during the
laboratory experiment, or
look up scoring of your earlier submission.

Simply click on the appropriate radio button
below, then click on the button labeled
“Continue”.

 Submit lab data
 Check your score

Continue [Press (click) the button to the

left to continue]

Figure 2: Initial student screen

27

Selections.php

Chem 100 Labs
Web Submission for Experiments

Hello, Stephen Knudson. Please select the proper entry in each column:

Lab Section # and Experiment #

Section:

1
2
3
4
5

 Experiment

1 Introduction
2 Avogardo's Number
3 Mass Relations
4 Acid/Base Titration
5 Gas Properties

[Press (click) the button to continue] Continue

(Click here if you wish to review basic instructions.) spacing
Copyright 2010-12 WBS Enterprises; Version: 1.4

Figure 3: Students pick both section number and experiment.

28

Gatherdata.php

Chem 100 Labs

Expt. # 4: Acid/Base Titration

Please enter the requested quantity in the spaces below.
Enter ONLY numbers (which may or may not be integer),
NO units.
For scientific notation, use E or e: e.g., 3.14e+4, -
2.718E-3.
All data is on your report sheet(s).
Average M of NaOH solution
Average % acetic acid in sample
Part III,top: # millimoles H3PO4 (nearest 0.01)
integer k, BCG indicator

integer k, TPL (thymolphthalein) indicator

press the button to submit your data: Submit

(Click here if you wish to review basic instructions.)

Copyright 2010-12 WBS Enterprises; Version: 1.4

Figure 4: Typical experimental data submission screen. Note that units are predefined.

29

Storedata.php

30

Confirmation Page

Expt. # 4: Acid/Base Titration

Name Stephen
Knudson

Course - Section Chem 100 - 2
Experiment # (see above)
Average M of NaOH solution 1
Average % acetic acid in sample 2
Part III,top: # millimoles H3PO4
(nearest 0.01)

3

integer k, BCG indicator 4
integer k, TPL (thymolphthalein)
indicator 5

Wed, Oct 17 2012, 10:10:36 AM

Thanks for submitting this data.
(If you need to make a correction, just click the Back button near top of the window)

If your values, shown in red, are correct, click LOGOUT to
finish, or
click HERE to start over.

Copyright 2010-12 WBS Enterprises; Version: 1.4

Figure 5: All data entered by a student is echoed for confirmation.

31

Appendix B Computer Requirements

Here we summarize the requirements for your institution and students.

In order to submit data, students must have access to a computer which operates a web
browsers. Any of the usual ones is adequate. The computer may be supplied by either the
student or the institution.

Your institution

• must operate a web server which

• supports forms and

• PHP.

• must operate a MySQL database.

• must support a student login for security.

• must provide files readable by the web server but not by students. These files should
have read/write permissions for the instructor. (Note: the php files in these directories
are NOT trivially read from the html on the student’s browser, as only selected portions
of the php files php are sent to the browser.)

32

Appendix C Version 1.6

This manual is specific to version 1.6, although changes from version 1.4 do not directly
affect student files. Major changes are the addition of screens which allow the user an easier
means to verify user edits, as described in Sections 7 and 8. The code remains largely
html5 compliant, according to the verification tool at http://validator.w3.org/check

and improved CSS support, verified at http://jigsaw.w3.org/css-validator

33

	Introduction
	Purpose
	A scoring tool
	Scoring versus grading
	Side Effect

	Web Based Scoring in Operation
	From the Point of View of an Individual Student
	From the Point of View of the Instructor

	Why bother with computerized scoring?
	Motivation and Goals

	Requirements
	Installation
	Installation Overview
	In the box

	Configuration: Data Submission Files
	Introduction
	Editing a database file
	Configure three files
	Appearance

	Configuration: Scoring Student Data
	What can be scored?
	How to instruct WBS to score
	What can't be scored?
	Other Options

	Technical Details
	Introduction
	Design Principles
	A quick primer on the use of php files

	Screens for Data Submission
	Wbsindex.html
	Selections.php
	Gatherdata.php
	Storedata.php

	Computer Requirements
	Version 1.6

