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a b s t r a c t

There is wide interest in studying longitudinal surveyswhere sample subjects are observed
successively over time. Longitudinal surveys have beenused inmany areas today, for exam-
ple, in the health and social sciences, to explore relationships or to identify significant vari-
ables in regression settings. This paper develops a general strategy for the model selection
problem in longitudinal sample surveys. A survey weighted penalized estimating equation
approach is proposed to select significant variables and estimate the coefficients simulta-
neously. The proposed estimators are design consistent and perform as well as the oracle
procedure when the correct submodel was known. The estimating function bootstrap is
applied to obtain the standard errors of the estimated parameters with good accuracy. A
fast and efficient variable selection algorithm is developed to identify significant variables
for complex longitudinal survey data. Simulated examples are illustrated to show the use-
fulness of the proposed methodology under various model settings and sampling designs.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the past two decades, various longitudinal surveys have been undertaken, where sample subjects are observed
successively over time. Some examples are the US National Compensation Survey, the International Price Program, the
Survey of Income and Program Participation, the US Longitudinal Studies of Aging and a range of more specialized studies.
These represent a very substantial investment in longitudinal resources, producing a diverse portfolio of researchmaterials,
and a vibrant national research culture that has a strong international visibility. Although many studies of these surveys
focus on estimating means, totals, proportions or ratios for certain populations, longitudinal survey data are frequently
used for the modeling and estimation of the relationship in regression analysis. For example, longitudinal social surveys are
conducted in many countries to identify factors that have effects on unemployment status or income; many health surveys
are aimed to gain insight of health determinants rather than estimating population totals or proportions.
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Longitudinal surveys are usually stratified and often multistage with unequal probabilities of selection at certain stages.
If some parts of the population are sampled more intensively than others and the survey sampling design is ignored in
the model selection, statistical inferences drawn from the sample can be remarkably different from those drawn from the
population.

In this paper, marginal models for longitudinal survey data are considered to tackle the design and longitudinal features
simultaneously. Generalized estimating equations (GEE) proposed by [11] is a popular method for these models. [13] first
introduced GEE for longitudinal survey data. [17] adapted the GEE approach of [13] to the analysis of ordinal longitudinal
survey responses. [3] developed a pseudo-GEE approach for longitudinal surveys under a joint randomization framework
and established the consistency of the resulting estimators.

In many surveys, a large number of auxiliary variables may be collected, and we may want to determine the ‘‘best’’
subset of the variables. Longitudinal survey data with a large number of covariates have become increasinglymore common
in many scientific disciplines. One representative example is the Canadian National Population Health Survey where the
researchers are interested in linking common risk factors with the possibility of loss of independence among seniors. In
this study, many variables, such as age, gender, smoking status, weight, height, chronic conditions, area of residence, etc.,
were measured over the years to describe the seniors’ health status and lifestyles. In some other examples of longitudinal
data, the number of variables measured on each individual or sampling unit may not be many, but if we consider various
interaction effects, the number of predictors in the statistical model can still be large. In addition, knowing which variables
are relevant gives insight into the nature of the survey design problem. For example, variable selection can be adopted to
find stratification variables in the primary sampling unit selection process for many surveys.

Variable selection is an essential part of many statistical methods, yet has been less studied in survey sampling compared
with other areas of applied statistics. This is partly due to the challenges created in joint consideration of the sampling
scheme, multilevel correlation and variable selection. The problem of selecting auxiliary variables was considered by [16] in
themodel-assisted frameworkwhile [4,5] in the prediction framework. [21] proposed aBayesian information criterion based
method to select the auxiliary variables for use in the additive model-assisted framework. Although they are practically
useful, these traditional selection procedures ignore stochastic errors inherited in the stages of variable selections [6]. The
well studied shrinkage methods such as LASSO [18,19,7] are developed under non-survey settings and are inappropriate to
select variables for data collected through complex sampling designs.

In this paper, we propose a consistent variable selection and estimationmethod for themarginal meanmodels for survey
sampling based on the penalized estimating equation approach. To the best of our knowledge, this is the first attempt
to consider this approach in sample surveys. We demonstrate that the proposed method performs as well as the oracle
procedure that assumes the true submodel to be known.

The rest of the paper is organized as follows. Section 2 introduces the models for longitudinal survey data, discusses
the main ideas of the penalized estimating equation approach, and provides the asymptotic properties of the penalized
estimators. Section 3 discusses some implementation issues and provides the estimating function bootstrap variance
estimators. The performance of the proposed variable selection method is studied via simulated data in Section 4. Section 5
summarizes the main results along with areas for future research. The proofs of the theorems along with technical lemmas
are provided in the Appendix.

2. Methodology

2.1. General setting

Suppose that the finite population UN consists of N individuals. In a longitudinal survey, a sample s of size n is selected
at wave one using a specified sampling scheme, and observed over a specified number of time points. Let wi be longitudinal
weights attached to the ith sample. We assume that the wis are first adjusted for unit nonresponse, then subjected to post
stratification adjustment to ensure consistency.

Suppose that the ith respondent is observed for mi occasions (1 ≤ mi ≤ m). The data for the ith sample consist
of


yij, xij

mi
j=1, where yij is the response on occasion j, xij =


xij1, . . . , xijd

T is a d-vector of covariates for each sampled
individual. The marginal model assumes that the mean response µij = E(yij|xij) is a function of xij. In this paper, we assume
thatµij depends on xij through a knownmonotonic and differentiable link function g(·), so thatwe get the generalized linear
superpopulation model

ηij ≡ g(µij) = xTijβ, (1)

which holds for thewhole population, whereβ is a d-dimensional regression parameter. To avoid confusion, in the following
let β0 ≡ (β01, . . . , β0d)

T be the true value of β. Denote β0 = (βT
01, β

T
02)

T, where β01 is da × 1 vector of the active
superpopulation coefficients, and β02 ≡ 0 is a (d − da) × 1 vector of the inactive coefficients. Our main goal is to identify
the da significant variables in model (1) and provide an accurate estimation for the non-zero coefficients. Our estimated da
is the number of the remaining non-zero βjs from the iterative algorithm presented in Section 3.1.

The GEE approach is a class of estimating equations which take into account the correlation arising due to a longitudinal
study design, resulting in the increased efficiency of standard error estimates. For simplicity, denote the sampled response
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yi =


yi1, . . . , yimi

T
mi×1

and ηi =


ηi1, . . . , ηimi

T
mi×1

, where 1 ≤ mi ≤ m, 1 ≤ i ≤ n. Similarly, let xi =
xi1, . . . , ximi

T
mi×d

. The mean function in model (1) can be written in matrix notation as ηi = xiβ. Let µ (·) = g−1 (·) be

the inverse of the link function.
Let 6i ≡ 6i (xi) = Var (yi|xi) be the true covariance of yi and let Gi = G (xi) be the assumed ‘‘working’’ covariance

of yi, where Gi = φA1/2
i RiA

1/2
i , Ai denotes an mi × mi diagonal matrix that contains the marginal variances of yij, and Ri

is an invertible working correlation matrix. Throughout, we assume that Ri can depend on a nuisance finite dimensional
parameter vector α, where α is distinct from β. The main advantage of the GEE approach is that it yields a consistent
estimator even if the working correlation matrix is misspecified.

2.2. Census GEE and survey-weighted GEE

Let µi = µ (xiβ) and 1i = ∂µi/∂ηT
i = diag


∂µij/∂ηij

mi
j=1


. If the entire population is observed, we define the

population parameter of β as the solution of

SN (β) =


i∈UN

d(xi, β) =


i∈UN

xTi 1i(β)G−1
i (β) {yi − µ (xiβ)} = 0. (2)

In practice, we generally do not observe the values for the whole population but only for those in a sample drawn from
the population. As in [3], we define the survey weighted GEE by

S (β) =


i∈s

wid(xi, β) =


i∈s

wixTi 1i(β)G−1
i (β) {yi − µ (xiβ)} = 0, (3)

by introducing the survey weights in (3). As pointed out in Subsection 6.3.1 of [8], when the inclusion probability and the
model error are correlated, the unweighted version of the estimators is generally biased. The proposed survey-weighted
estimator is robust to misspecifications of the superpopulation estimating equations (2).

2.3. Penalized survey-weighted GEE

We are interested in variable selection for the marginal mean models based on the sample drawn from the finite
population. [10] proposed a consistent variable selection method based on the following penalized GEE,

SP
N (β) = SN (β) − Nqλ (β) sgn (β) = 0 (4)

for λ = (λ1, . . . , λd)
T, where qλ (β) = diag


p′

λ1
(|β1|) , . . . , p′

λd
(|βd|)


for some penalty function pλj with a regularization

parameter λj. Various penalty functions have been used in the literature of variable selection for regression models. For
example, the hard thresholding (HARD) penalty, pλ(|β|) = λ2

− (|β| − λ)2I(|β| < λ); the LASSO penalty [18,19],
pλ(|β|) = λ|β|; the adaptive LASSO (ALASSO) penalty [22], pλl(|β|) = λw∗

l |βl|, for a known data-driven weightw∗

l ; and the
SCAD penalty [6], p′

λ (β) = λ

I (β < λ) + (cλ − β)+ /{(c − 1) λ}I (β ≥ λ)


for some c > 2 and β > 0. The selection of λ

will be discussed in Section 3.1.
Define βN to be the solution of (4) based on the whole population. Under general conditions, [10] showed the sparsity

of the penalized GEE estimator βN . In addition, [10] also showed that with appropriate penalty functions βN behaves
asymptotically as if the true model is known a priori, i.e., the ‘‘oracle’’ property given in (9).

We define the survey penalized GEE asSP (β) =S (β) − Nqλ (β) sgn (β) = 0. (5)

Recently, [3] has shown that the usual GEE software procedures are not appropriate for analyzing longitudinal survey
data, even if one specifies the weight variable as the survey weights in (3). Consequently, the direct variable selection
procedure in [10] (with survey weights being the weight variable) is not valid for longitudinal surveys, either. Therefore,
the theory and practice of the penalized survey-weighted estimator must be re-examined. In the following we study the
asymptotic behavior for the proposed estimators.

2.4. Asymptotic results

Let FN = {(x1, y1) , . . . , (xN , yN)} be the N-th finite population in the sequence of finite populations {FN}. Let πi be the
inclusion probability for i ∈ UN and πik be the inclusion probability for both elements i, k ∈ UN . Without loss of generality,
we take the sampling weight wi in (3) and (5) as 1/πi.
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Let h(xi, β) = xTi 1i(β)G−1
i (β)1i(β)xi. We assume the following conditions:

(C1) the sampling fraction limN→∞ n/N = f for some 0 < f ≤ 1;
(C2) the inclusion probabilities satisfy that mini∈UN πi ≥ a > 0, mini≠k πik ≥ a∗ > 0 and lim supN→∞ nmaxi≠k |πik −

πiπk| ≤ C for some constant C;
(C3) the sequence of functions d(xi, β) and h(xi, β) are both continuous in β for all xi and β in a closed set B containing β0;
(C4) there exist positive constants M , M1 and M2, such that ∥d(xi, β0)∥ ≤ M, M1 ≤ ρmin{h(xi, β0)h

T(xi, β0)} ≤

ρmax{h(xi, β0)h
T(xi, β0)} ≤ M2, for any i ∈ UN , where ρmin and ρmax denote the minimum and maximum eigenvalues

of a matrix;
(C5) for all β in a neighborhood of βN , there exists a nonsingular matrix Ω (β) such that

lim
N→∞

n
N2


i,k∈UN


πik

πiπk
− 1


d(xi, β)dT(xk, β) = Ω (β) .

Conditions (C1) and (C2) are not unusual in the survey sampling; see, for example, [8,21]. Conditions (C3) and (C4) are
common ones to show the consistency of the GEE estimators; see [20]. Condition (C5) is similar to Condition 5 in [1]. We
now present the following main theorems whose proofs are given in the Appendix.

Theorem 1. Under Conditions (C1)–(C5), the survey weighted estimating equation (3) has a root β, such that

(i) β is design consistent for the finite population estimator βN in the following sense that for any ε > 0,

lim
N→∞

pr

∥β − βN∥ > ε|FN


= 0 a.s.,

and further

lim
C→∞

lim sup
N→∞

pr

∥β − βN∥ > Cn−1/2

|FN


= 0 a.s.;

(ii) As N → ∞,

n1/2V−1/2
1 (β − βN)|FN → N (0, I)

in distribution, and the asymptotic covariance

V1 = lim
N→∞

H−1
N (βN)�


βN


H−1

N (βN) (6)

with

HN(β) = N−1

i∈UN

h(xi, β) = N−1

i∈UN

xTi 1i(β)G−1
i (β)1i(β)xi; (7)

(iii) As N → ∞,
√
n(V1 + fV2)

−1/2(β − β0) → N (0, I)

in distribution, where

V2 = lim
N→∞

H−1
N (β0)QN(β0)H

−1
N (β0) (8)

with QN(β) = N−1 
i∈UN

xTi 1i(β)G−1
i (β)6iG−1

i (β)1i(β)xi.

From Theorem 1, one sees that the variance of the survey-weighted estimator consists of two parts: a sampling variance
component V1 and a model variance component V2. In most applications, 0 < f < 1, and thus both V1 and V2 are positive
definite. If N − n → 0 as N increases, for example, we take a complete census so that n = N , then the sampling variance
component V1 = 0. Conversely, if the sampling rate is very small, then the sampling variance component V1 will be the
leading term in the joint variance.

Denote

q01 = −


p′

λ1
(|β01|) sgn (β01) , . . . , p′

λda

β0da

 sgn 
β0da

T
,

J01 = diag

p′′

λ1
(|β01|) , . . . , p′′

λda

β0da

 .

Write βN = (βT
N1, β

T
N2)

T, where βT
N1 = (β1N , . . . , βdaN), βT

N2 = (β(1+da)N , . . . , βdN). Under some regularity conditions,
Theorem 1 of [10] implies that

√
NV−1/2

22


βN1 − β01 + (HN1 + J01)−1 q01


→ N (0, I) (9)
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in distribution, where the asymptotic covariance matrix

V22 = lim
N→∞

(HN1 + J01)−1 QN1 (HN1 + J01)−1

with HN1 and QN1 being the first da × da submatrices of HN and QN .
We write SP (β) = (SP

1 (β), . . . , SP
d (β))T, where SP

j (β) = eTj S
P (β) and ej be a d-dimensional vector with a ‘‘1’’ in the

jth position and a ‘‘0’’ elsewhere. In the following we denote λ by λn to indicate its dependence on the sample size n. We
introduce one more condition that is on the penalty.

(C6) The penalty function, pλn(·), has the following properties: (i) for nonzero fixed θ , limn→∞ n1/2p′

λn
(|θ |) = 0 and

limn→∞ n1/2p′′

λn
(|θ |) = 0; (ii) for any positive constant C , lim inf|θ |≤Cn−1/2, n→∞

√
np′

λn
(|θ |) = ∞.

Condition (C6) is about the penalty function and regularization parameter, which is also required in [10].

Theorem 2. Under Conditions (C1)–(C6), there exists an approximate solution to the survey penalized GEE (5),β = (βT
1,

βT
2)

T,
such that

(i) β is design consistent for the finite population estimator βN0 = (β
T
N1, 0

T)T, where βN1 is the exact solution to the Census
GEE (2) using the first da auxiliary variables, andβ is a root-n consistent estimator of β0;

(ii) limN→∞ pr(|SP
j (β)| = 0, j = 1, . . . , da) = 1;

(iii) limN→∞ pr(β2 = 0) = 1;
(iv) β is an approximate zero-crossing of SP in the sense that for any j = da + 1, . . . , d

lim sup
N→∞

lim sup
ϵ→0+

N−1SP
j (β + ϵej)SP

j (β − ϵej) ≤ 0;

(v) As N → ∞,
√
n(V11 + fV22)

−1/2
β1 − β01 + (HN1 + J01)−1 q01


→ N (0, I)

in distribution, where V11 and V22 are the first da × da submatrix of V1 and V2 in (6) and (8), respectively.

Theorem 2 implies that the penalized estimators with the penalty functions satisfying Condition (C6), such as the HARD,
SCAD and ALASSO penalty, have the oracle property.

3. Implementation

3.1. Algorithm and choice of tuning parameters

To estimate thepenalized regression coefficients,we consider theMajorize–minorize (MM) algorithm in [9]. Suppose that
we have an initial valueβ(0)

. For example, we can takeβ(0)
to be the solution of the survey weighted estimating equation

in (3). DenoteH(β) = N−1

i∈s

wih(xi, β) = N−1

i∈s

wixTi 1i(β)G−1
i (β)1i(β)xi. (10)

By the local quadratic approximations for penalty functions [6], the MM algorithm can be implemented as follows:

β(k+1)
= β(k)

+

H β(k)


+ 6λ

β(k)
−1


N−1


i∈s

wid

xi,β(k)


− 6λ

β(k)
β(k)


,

where

6λ (β) = diag
p′

λ1
(|β1|)

ϵ + |β1|
, . . . ,

p′

λd
(|βd|)

ϵ + |βd|


(11)

for a small ϵ (ϵ = 10−6 in our simulation studies) and tuning penalty parameters λ = (λ1, . . . , λd)
T. One can repeat the

above iteration process until convergence is reached. An estimateβ(k)
l is treated as zero if its absolute value is smaller than ϵ0

(a pre-specified value, for example, 10−6), andwe delete the l-th component of xi from the iteration.We use the convergence
criterion such that ∥β(k+1)

− β(k)
∥ ≤ τ (τ = 10−6 in our simulation studies). From our experience, the algorithm is quite

stable and fast to compute. It usually reaches a reasonable convergence tolerance within a few iterations.
Let N̂ =


i∈s wi and N̂m =


i∈s wimi. We can estimate the dispersion parameter φ by

φ̂ = (N̂m − p)−1

i∈s

wi

mi
j=1

r̂2ij ,
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where r̂ij = {V (µ̂ij)}
−1/2(yij − µ̂ij) and µ̂ij = g−1(xTijβ̂). Next, for the working correlation matrix R = (αjj′), we estimate αjj′

by

α̂jj′ = (N̂ − p)−1φ̂−1

i∈s

wi r̂ij r̂ij′ .

If the correlation matrix is assumed to have some special structures, we can estimate it using the method proposed by [11]
but with the sampling weights. Taking the exchangeable correlation structure for example, R = R(α) = (1− α)I+ α11T in
which 1 is a vector with all ‘‘1’’, and we can estimate α by

α̂ = φ̂

i∈s


j>j′

wi r̂ij r̂ij′


1
2


i∈s

wimi(mi − 1) − p


.

We use the Bayesian information criterion to select the tuning penalty parameters. Let

e (λ) = tr
H(βλ) + 6λ(βλ)

−1 H(βλ)


be the effective number of parameters in the last step of the Newton–Raphson iteration. We define

BIC (λ) = log


N̂−1
m


i∈s

mi
j=1

wi r̂2ij


+ N̂−1

m log(N̂m)e (λ) .

We selectλ = argminλBIC (λ).

3.2. Standard error estimation

The standard errors for the estimated parameters can be obtained as follows. For a given sample design with inclusion
probabilities πi and πik, we estimate � by� =

n
N2


i,k∈s

πik − πiπk

πik
π−1
i π−1

k d(xi,β)dT(xk,β),

a design-consistent estimator of �. LetJ1 = diag

p′′

λ1
(|β1|), . . . , p′′

λda
(|βda |)


. Then V11 can be estimated by

V11 = (H1 +J1)−1�1(H1 +J1)−1,

whereH1 and �1 are the first da × da submatrix ofH and �, respectively. Similarly, letQN =


i∈s

wixTi 1i(β)G−1
i (β)6iG−1

i (β)1i(β)xi.

A consistent estimator of V22 is given byV22 = (H1 +J1)−1Q1(H1 +J1)−1,

whereQ1 is the first da × da submatrix ofQN .
In complex surveys, the asymptotic variance ofβ is often too complicated to calculate directly. The delete-one-cluster

Jackknife variance estimator was proposed by [15]. It is possible to have many sets of customary jackknife weights for
which the above estimation algorithm would not converge due to ill-conditioned matrices that are not invertible. To avoid
the inversion of possibly ill-conditioned matrices, one can use the estimating function (EF) bootstrap approach proposed by
[2,14]. Let


w

(b)
i


i∈s

be the weights for the bootstrap sample s∗b, b = 1, . . . , B. For example, in cluster sampling, the survey
units forming the b-th bootstrap replicate are obtained by sampling lc − 1 clusters independently with replacement from
the lc sampled cluster. For the b-th bootstrap sample, each weight w

(b)
i is created by adjusting the survey weight variable

for the ith unit to account for the results of the replicate sampling and any other adjustments done to the survey weight;
see Eq. (14) below. The one-step bootstrap estimators from the bootstrap sample b are then given by

β(b)
= β + (H + 6λ)

−1
×


1
N


i∈s

w
(b)
i d(xi,β) − 6λ

β
,

where 6λ = 6λ(β) for 6λ(·) given in (11). The EF-bootstrap estimator of V1 in (6) is given by

VEF
1 =

n
B

B
b=1

β(b)
−β β(b)

−βT
. (12)

Our limited simulation results indicate that this variance estimator is useful even in some complex sampling context.
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Table 1
Example 1. Model selection results.

n Pλ WI EC AR-1 AR-2 Time (s)
TP FP C ME TP FP C ME TP FP C ME TP FP C ME

(a) Sample without weights

100

scad 4.79 0.0 80 133.0 4.84 0.0 86 8.7 4.84 0.0 86 20.9 3.20 0.0 23 16.9 3.0
hard 4.99 0.0 99 92.4 4.88 0.0 89 8.1 4.92 0.0 93 9.5 3.31 0.0 30 15.0 3.3
alasso 5.00 0.0 100 91.6 5.00 0.0 100 4.6 5.00 0.0 100 5.8 4.74 0.0 81 9.2 1.9
oracle 5.00 0.0 100 90.5 5.00 0.0 100 3.8 5.00 0.0 100 5.1 5.00 0.0 100 4.3 0.02

200

scad 4.88 0.0 89 58.3 4.93 0.0 95 4.5 4.65 0.0 72 8.2 4.19 0.0 61 11.9 9.0
hard 5.00 0.0 100 44.4 5.00 0.0 100 3.8 4.97 0.0 97 5.0 4.26 0.0 66 7.2 5.2
alasso 5.00 0.0 100 44.4 5.00 0.0 100 2.7 5.00 0.0 100 3.0 4.99 0.0 99 3.8 2.3
oracle 5.00 0.0 100 44.4 5.00 0.0 100 1.8 5.00 0.0 100 2.5 5.00 0.0 100 2.1 0.04

(b) Sample with weights

100

scad 4.78 0.0 81 124.8 4.99 0.0 99 8.1 4.32 0.0 53 13.1 4.43 0.0 71 22.8 3.9
hard 5.00 0.0 100 82.8 5.00 0.0 100 7.3 4.85 0.0 88 9.5 4.51 0.0 76 12.6 5.6
alasso 5.00 0.0 100 82.9 5.00 0.0 100 5.9 5.00 0.0 100 5.9 4.82 0.0 87 8.4 2.7
oracle 5.00 0.0 100 82.8 5.00 0.0 100 4.3 5.00 0.0 100 5.8 5.00 0.0 100 6.7 0.02

200

scad 4.86 0.0 87 58.9 5.00 0.0 100 4.3 4.67 0.0 73 8.1 4.66 0.0 83 10.2 7.0
hard 5.00 0.0 100 45.8 5.00 0.0 100 3.8 4.98 0.0 98 5.2 4.69 0.0 85 5.2 9.2
alasso 5.00 0.0 100 45.8 5.00 0.0 100 3.2 5.00 0.0 100 3.2 4.95 0.0 96 4.0 5.1
oracle 5.00 0.0 100 45.7 5.00 0.0 100 2.0 5.00 0.0 100 2.8 5.00 0.0 100 2.7 0.04

4. Simulation studies

In this section, we study the numerical performance of the proposed selection method via some simulation studies.

4.1. Example 1: simple random sampling design

In this example, we consider the simple random sampling design. We simulate N = 5000 individuals through the
following marginal mean model

yij = xTijβ + 0.5ϵij, i = 1, . . . , 5000, j = 1, 2, . . . , 5

where the coefficients β = (3, 1.5, 0, 0, 2, 0, 0, 0)T. There are eight predictors in this example. The first six predictors are
generated independently from a multivariate normal distribution N(0, 6X ), where 6X = (1 − ρx)I + ρx11T with ρx = 0.5.
The last two predictors are generated by xij7 = 0.3xij1 +0.7uij and xij8 = 0.3xij2 +0.7vij, where uij and vij are generated from
N(0, 1). The errors ϵi = (ϵi1, ϵi2, . . . , ϵi5)

T are generated from N(0, 6E), where the covariance matrix is exchangeable and
6E = (1− ρ)I+ ρ11T with ρ = 0.95. Note that, unbalanced data are quite common in longitudinal studies, we make 1% of
the data missing on purpose, and the missing data are missing completely at random. We select 1000 Monte Carlo simple
random samples (SRS) of sizes 100 and 200 from the same population as described above.

To evaluate how the sampling weights affect the selection and estimation results, we consider two penalized GEE
methods: onewithweights and onewithoutweights. Sincewe consider SRS in this example, the samplingweights for all the
individuals are identical, and wi = N/n for i ∈ s. We consider the following correlation structures: working independence
(WI), exchangeable (EC), AR(1) (AR-1) and AR(2) (AR-2). We compare the model error

ME(β) = (β − β)T


i∈UN

m
j=1

xijxTij


(β − β) (13)

of the estimatorsβ under different correlation structures.
Table 1 reports the selection results with weights and without weights. The columns labeled with ‘‘TP’’ give the average

number of the five zero coefficients correctly set to 0; the columns labeled with ‘‘FP’’ give the average number of the three
nonzero coefficients incorrectly set to 0; the columns labeled with ‘‘C’’ represent the percentage of times the true model is
exactly selected; and the columns labeled with ‘‘ME’’ give the median of the model errors defined in (13). The rows with
‘‘scad’’, ‘‘hard’’ and ‘‘alasso’’ stand respectively for the penalized least squares with the SCAD, HARD and adaptive LASSO
penalty. For the SCAD penalty, we did not tune the parameter c . Following [6]’s suggestion, we set c = 3.7 to reduce
the computation burden. The ‘‘oracle’’ method always identifies the five zero coefficients and three nonzero coefficients
correctly since we know the true submodel in this case. From Table 1, one sees that the proposed penalized estimators all
behave closer to the oracle estimator as the sample size increases. Table 1 also shows that the regular penalized GEEwithout
usingweights and the surveyweightedGEE yield very similar results. This is not surprising since theweights associatedwith
individuals are all the same for SRS.
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Table 2
Example 1. Bias ratios (%) of the estimated coefficients.

Size Pλ WI EC AR-1 AR-2
β1 β2 β5 β1 β2 β5 β1 β2 β5 β1 β2 β5

(a) Population

5000

scad −0.31 0.39 −0.33 −0.04 −0.22 −0.20 −0.13 −0.29 −0.31 −0.04 −0.23 −0.20
hard −0.31 0.39 −0.33 −0.03 −0.12 −0.01 −0.05 −0.14 0.00 −0.04 −0.12 0.00
alasso −0.31 0.39 −0.33 −0.02 −0.00 −0.04 −0.04 0.00 −0.06 −0.03 0.03 −0.03
oracle −0.31 0.39 −0.33 −0.02 −0.13 0.00 −0.03 0.14 −0.02 −0.01 0.09 −0.02

(b) Sample without weights

100

scad 0.29 −1.46 −0.49 −0.49 −1.47 −0.14 −0.54 −1.51 −0.20 −0.93 −2.14 −0.06
hard 0.31 −0.04 −0.24 −0.15 −0.61 −0.34 −0.16 −0.54 −0.33 −0.86 −2.02 −0.09
alasso 0.31 −0.02 −0.24 −0.04 −0.17 −0.05 −0.06 −0.13 −0.06 −0.38 −0.91 −0.03
oracle 0.31 0.04 −0.24 −0.01 −0.01 0.01 −0.01 0.05 0.03 −0.01 0.00 0.04

200

scad 0.22 −0.72 −0.51 −0.35 −0.76 −0.52 −0.31 −0.54 −0.40 −0.23 −0.55 −0.32
hard 0.25 −0.03 −0.22 −0.10 −0.55 −0.27 −0.13 −0.46 −0.27 −0.07 −0.43 −0.17
alasso 0.25 −0.04 −0.22 −0.04 −0.24 −0.08 −0.06 −0.13 −0.06 −0.03 −0.19 −0.04
oracle 0.25 −0.03 −0.22 0.00 −0.01 0.01 −0.01 0.03 0.02 −0.01 0.00 −0.04

(c) Sample with weights

100

scad 0.08 −1.17 −0.81 −0.45 −1.02 −0.13 −0.34 −0.57 −0.45 −0.37 −0.83 −0.53
hard 0.27 0.20 −0.10 −0.09 −0.66 −0.34 −0.16 −0.56 −0.36 −0.10 −0.60 −0.27
alasso 0.27 0.19 −0.10 −0.05 −0.35 −0.14 −0.05 −0.09 −0.06 −0.05 −0.27 −0.07
oracle 0.28 0.20 −0.10 −0.01 0.01 0.01 −0.03 0.08 0.01 −0.01 −0.03 0.02

200

scad 0.22 −0.67 −0.51 −0.28 −0.69 −0.49 −0.30 −0.51 −0.42 −0.27 −0.66 −0.43
hard 0.26 0.03 −0.21 −0.06 −0.57 −0.28 −0.13 −0.45 −0.30 −0.07 −0.52 −0.24
alasso 0.26 0.02 −0.21 −0.05 −0.35 −0.15 −0.05 −0.11 −0.08 −0.04 −0.30 −0.10
oracle 0.26 0.03 −0.21 −0.01 0.00 0.00 −0.03 0.06 −0.01 0.00 −0.03 0.01

It has been pointed out in [8] that if themodel error is independent of the inclusion probability, πi, the estimator remains
unbiased; while if the error is correlated with πi, the estimator will be biased. Table 2 illustrates the relative bias of the
estimated coefficients: panel (a) shows (βNj − β0j)/β0j × 100%, j = 1, 2, 5, where βNj is obtained from the penalized GEE
based on population; panels (b) and (c) show the relative design bias (Ep(β̂j) − β0j)/β0j × 100%, j = 1, 2, 5, where β̂j is
obtained from the penalized GEE based on sample without sampling weights and with weights, respectively. Comparing
panels (b) and (c), one sees that the survey weighted estimators have similar bias to those without using weights.

We now test the accuracy of the asymptotic standard error formula given in Theorem 2 and the EF-bootstrap based
standard error in (12). To obtain the EF-bootstrap standard error, we produce 500 bootstrap replicates by taking an SRS of
n − 1 individuals with replacement from the n sampled individuals. The bootstrap weights in the b-th bootstrap replicate
were then obtained by

w
(b)
i =

n
n − 1

q(b)
i wi =

N
n − 1

q(b)
i

where q(b)
i is the number of repetitions of the ith cluster in the b-th bootstrap replicate.

Table 3 summarizes the standard error estimation results under the correct ‘‘exchangeable’’ working correlation. The
median absolute deviation divided by 0.6745, denoted by SD in Table 3, of 1000 estimated coefficients in the 1000
simulations can be regarded as the true standard error. The column labeled ‘‘SDSF’’ represents the asymptotic standard error
shown in Theorem 2. The column labeled ‘‘SDEF’’ represents the standard error calculated using the EF-bootstrap method.
From Table 3, one sees that the SD, SDSF and SDEF are very close to each other.

4.2. Example 2: stratified cluster sampling design

In this example,we consider a stratified one-stage cluster sampling design. Similarly to Example 1,we generateN = 5000
individuals through the following model:

yij = xTijβ + 0.5ϵij, i = 1, . . . , 5000, j = 1, 2, . . . , 5

where the coefficients β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and we include eight predictors in the model. The first seven predictors
are time-varying generated from amultivariate normal distributionN(0, 6X ), where6X = (1−ρx)I+ρx11T with ρx = 0.5.
The last predictor is the stratification variable, which is time independent, and we consider four equal sized strata, that
is, xij8 = 1, 2, 3, 4. The errors ϵi are generated using the same way as in Example 1, and we let 1% of the data be missing
completely at random.

Next, we describe the details of our stratified one-stage cluster sampling plan. Within each stratum, we randomly select
5 or 10 clusters and we consider unequal probability sampling without replacement. Let πhci and ϵhci be the inclusion
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Table 3
Example 1. Standard errors of the estimated coefficients (exchangeable covariance).

Pλ β1 β2 β5

SD SDSF SDEF SD SDSF SDEF SD SDSF SDEF

(a) Population

5000
scad – 0.0012 – – 0.0012 – – 0.0012 –
hard – 0.0012 – – 0.0012 – – 0.0012 –
alasso – 0.0012 – – 0.0012 – – 0.0012 –

(a) Sample with weights

n = 100
scad 0.0093 0.0084 0.0085 0.0084 0.0084 0.0085 0.0095 0.0084 0.0084
hard 0.0093 0.0084 0.0084 0.0107 0.0084 0.0085 0.0092 0.0083 0.0084
alasso 0.0086 0.0083 0.0098 0.0101 0.0083 0.0097 0.0098 0.0082 0.0095

n = 200
scad 0.0063 0.0060 0.0061 0.0064 0.0060 0.0061 0.0066 0.0059 0.0060
hard 0.0068 0.0059 0.0060 0.0074 0.0060 0.0061 0.0067 0.0059 0.0060
alasso 0.0062 0.0059 0.0070 0.0079 0.0059 0.0069 0.0068 0.0058 0.0068

Table 4
Example 2. Model selection results.

n Pλ WI EC AR-1 AR-2 Time (s)
TP FP C ME TP FP C ME TP FP C ME TP FP C ME

(a) Sample without weights

100

scad 4.41 0.0 52 209.0 4.05 0.0 36 16.0 4.38 0.0 54 21.4 3.03 0.0 11 39.9 2.0
hard 4.87 0.0 88 115.8 4.71 0.0 75 12.2 4.83 0.0 85 14.9 3.04 0.0 13 41.0 2.9
alasso 4.98 0.0 98 98.9 4.99 0.0 99 5.5 4.99 0.0 99 7.5 4.53 0.0 64 17.1 2.0
oracle 5.00 0.0 100 95.2 5.00 0.0 100 4.6 5.00 0.0 100 5.7 5.00 0.0 100 4.7 0.02

200

scad 4.50 0.0 55 95.2 4.73 0.0 79 13.8 4.62 0.0 70 11.7 3.63 0.0 39 22.4 5.3
hard 4.95 0.0 95 56.3 4.97 0.0 97 6.7 4.94 0.0 94 7.5 3.73 0.0 45 18.9 5.2
alasso 4.99 0.0 99 51.1 5.00 0.0 100 5.2 5.00 0.0 100 5.9 4.95 0.0 96 9.8 2.4
oracle 5.00 0.0 100 51.4 5.00 0.0 100 2.8 5.00 0.0 100 3.5 5.00 0.0 100 3.1 0.03

(b) Sample with weights

100

scad 4.83 0.0 83 97.1 4.99 0.0 99 9.5 4.98 0.0 98 21.9 4.36 0.0 71 21.2 6.6
hard 4.98 0.0 98 78.5 5.00 0.0 100 6.3 5.00 0.0 100 9.7 4.38 0.0 73 11.9 7.4
alasso 5.00 0.0 100 77.9 5.00 0.0 100 8.2 5.00 0.0 100 9.5 4.82 0.0 86 13.8 4.3
oracle 5.00 0.0 100 74.0 5.00 0.0 100 4.6 5.00 0.0 100 6.1 5.00 0.0 100 6.8 0.06

200

scad 5.00 0.0 100 51.1 5.00 0.0 100 4.7 5.00 0.0 100 10.0 4.92 0.0 93 8.7 7.8
hard 4.98 0.0 98 41.4 4.99 0.0 99 3.5 4.99 0.0 099 5.4 4.52 0.0 81 5.3 9.6
alasso 5.00 0.0 100 40.9 5.00 0.0 100 4.4 5.00 0.0 100 5.2 4.92 0.0 93 5.9 7.8
oracle 5.00 0.0 100 40.8 5.00 0.0 100 2.2 5.00 0.0 100 3.0 5.00 0.0 100 2.8 0.09

probability and associated measurement error for the ith individual from cluster c in stratum h. Unlike Example 1, in this
simulation we consider an informative design, and specifically, we let πhci be proportional to

5
i=1 ∥ϵhci∥. We select all the

individuals in the selected clusters. The final sample size is n = 100 and n = 200. We generate 1000 Monte Carlo samples
using the above design from the same population.

To evaluate how the sampling weights affect the selection and estimation results, we consider two penalized GEE
methods: one with weights whci = π−1

hci and one without weights. Table 4 reports the selection results with weights and
without weights. From Table 4, one sees that the proposed penalized estimators all behave closer to the oracle estimator
as the sample size increases. Table 4 also implies that the survey weighted penalized GEE improves upon those without
weights, regardless of the sampling fractions and the penalization functions, which shows that the sampling weights are
not redundant.

Table 5 illustrates the relative design bias of the coefficients estimated without sampling weights and with weights,
respectively. FromTable 2, one sees that the surveyweighted estimators have smaller bias than thosewithout usingweights,
which confirms the findings in [8] that the unweighted estimators are biased if the model error is correlated with the
inclusion probability.

We now test the accuracy of the EF-bootstrap based standard error formula given in (12). To handle themultistage aspect
of the sampling within stratum, we produce 500 bootstrap replicates by taking a simple random sample of lc − 1 clusters
with replacement from the lc sample clusters. The bootstrap weights in the b-th bootstrap replicate were then obtained by

w
(b)
hci =

lc
lc − 1

q(b)
c whci, (14)
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Table 5
Example 2. Bias ratios (%) of the estimated coefficients.

Size Pλ WI EC AR-1 AR-2
β1 β2 β5 β1 β2 β5 β1 β2 β5 β1 β2 β5

(a) Population

5000

scad 0.26 −0.33 0.06 0.03 −0.09 −0.05 0.01 −0.16 −0.01 0.03 −0.09 −0.06
hard 0.26 −0.33 0.06 0.03 −0.14 −0.04 0.01 −0.37 −0.08 0.03 −0.13 −0.06
alasso 0.26 −0.33 0.06 0.02 −0.10 −0.08 0.00 −0.15 0.00 0.02 −0.09 −0.09
oracle 0.26 −0.33 0.06 0.02 −0.01 −0.06 0.03 −0.06 −0.02 0.02 −0.02 −0.04

(b) Sample without weights

100

scad 0.08 −2.15 −1.31 −0.25 −0.51 −0.43 −0.32 −0.70 −0.58 −0.03 −0.03 −0.11
hard 0.37 −0.44 −0.25 −0.17 −0.68 −0.47 −0.16 −0.76 −0.52 −0.02 −0.05 −0.11
alasso 0.38 −0.26 −0.25 −0.03 −0.17 −0.14 −0.02 −0.22 −0.17 −0.02 −0.02 −0.13
oracle 0.27 −0.63 −0.01 0.03 −0.01 −0.05 −0.05 −0.06 0.01 0.04 −0.02 −0.03

200

scad 0.23 −1.31 −0.69 −0.35 −0.71 −0.59 −0.29 −0.59 −0.52 −0.14 −0.23 −0.28
hard 0.30 −0.42 −0.19 −0.14 −0.68 −0.45 −0.13 −0.59 −0.42 −0.06 −0.22 −0.23
alasso 0.30 −0.28 −0.20 −0.04 −0.24 −0.18 −0.03 −0.19 −0.17 −0.04 −0.11 −0.15
oracle 0.30 −0.58 0.06 −0.03 0.025 −0.05 −0.03 0.03 −0.02 −0.03 0.02 −0.02

(c) Sample with weights

100

scad 0.21 −0.45 −0.10 −0.13 −0.88 −0.53 −0.39 −1.17 −0.81 −0.16 −0.65 −0.50
hard 0.21 −0.07 −0.07 −0.01 −0.62 −0.17 −0.03 −0.75 −0.31 −0.02 −0.41 −0.20
alasso 0.21 −0.11 −0.08 −0.11 −0.73 −0.37 −0.06 −0.59 −0.28 −0.09 −0.46 −0.30
oracle 0.17 −0.40 −0.05 0.02 −0.02 −0.04 0.02 −0.06 −0.04 0.02 −0.01 −0.07

200

scad 0.22 −0.29 −0.02 −0.08 −0.57 −0.32 −0.06 −0.53 −0.28 −0.07 −0.44 −0.28
hard 0.22 −0.25 −0.01 −0.01 −0.45 −0.11 −0.01 −0.61 −0.26 −0.02 −0.40 −0.18
alasso 0.22 −0.29 −0.02 −0.08 −0.57 −0.32 −0.06 −0.53 −0.28 −0.07 −0.44 −0.28
oracle 0.22 −0.25 0.01 0.00 0.03 −0.02 0.01 −0.04 0.05 0.03 0.01 −0.06

Table 6
Example 2. Standard errors of the estimated coefficients (exchangeable covariance).

Size Pλ β1 β2 β5

SD SDEF SD SDEF SD SDEF

100
scad 0.0111 0.0139 0.0090 0.0092 0.0093 0.0094
hard 0.0089 0.0103 0.0090 0.0091 0.0093 0.0093
alasso 0.0099 0.0123 0.0090 0.0090 0.0117 0.0119

200
scad 0.0067 0.0093 0.0068 0.0067 0.0086 0.0086
hard 0.0062 0.0063 0.0068 0.0068 0.0069 0.0070
alasso 0.0067 0.0093 0.0068 0.0067 0.0086 0.0086

where whci is the original sampling weight of the ith individual from the c-th cluster in the h-th stratum, q(b)
c is the number

of repetitions of the c-th cluster in the b-th bootstrap replicate.
Table 6 summarizes the estimation results under the correct ‘‘exchangeable’’ working correlation. The column labeled

‘‘SD’’ represents the median absolute deviation of 1000 estimated coefficients in the 1000 simulations divided by 0.6745,
which can be regarded as the true standard error. The column labeled ‘‘SDEF’’ represents the standard error calculated using
the EF-bootstrap method. These numerical results suggest that the proposed EF-bootstrap procedure in Section 3.2 yields
reasonable standard error estimates.

4.3. Example 3: Canadian National Population Health Survey

The Canadian National Population Health Survey (NPHS) is a longitudinal survey on the health of Canadians. [12] fit
a logistic model to the Canadian NPHS data, which explains the relationship between the loss of independence among
seniors (LOSS) and individual factors associated with their health status, living arrangements and habits. In this example,
we simulate two cycles of health survey data similar to the Canadian NPHS using the following model:

logit (LOSS) = −2.5 + 2 ∗ SEX + 1.2 ∗ AGE + 0.5 ∗ BMI + 1.5 ∗ CHRDS + 1.5 ∗ SMOK. (15)

In the above model, the response variable LOSS is binary: it is 1 if a person has lost independence within the last two
years, and it is 0 if remains independent. We generate the LOSS variable using the exchangeable structure with a correlation
parameter of 0.1. The covariates in this model are: SEX (binary, 0 for women, 1 for men), AGE (continuous, N(0, 1) after
standardization), BMI (continuous, N(0, 1) after standardization), CHRDS (binary, 1 if at least one of 10 chronic conditions is
present, 0 otherwise) and SMOK (binary, 1 if presently smokes daily or if quit recently, 0 otherwise). Other variables listed
in the NPHS but not included in model (15) are URBRUR (0 if an area of residence is urban, and 1 otherwise), EDU (0 if
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Table 7
Example 3. Four ACC (Accessibility) score classes.

Class Accessibility pr(ACC)

1 Low p < 0.015
2 Medium low 0.015 ≤ p < 0.048
3 Medium high 0.048 ≤ p < 0.15
4 High p ≥ 0.15

Table 8
Example 3. Model selection results.

Pλ WI EC AR-1
TP FP C TP FP C TP FP C

scad 5.962 0.000 97 5.962 0.000 97 5.962 0.000 97
hard 5.940 0.000 94 5.940 0.000 94 5.940 0.000 94
alasso 6.000 0.000 100 6.000 0.000 100 6.000 0.000 100
oracle 6.000 0.000 100 6.000 0.000 100 6.000 0.000 100

Table 9
Example 3. Estimation results of the coefficients (exchangeable covariance).

Est. Pλ BIAS SDEF RMSE Pλ BIAS SDEF RMSE

Intercept

oracle

0.0166 0.1105 0.1065

hard

0.0166 0.1102 0.1094
SEX −0.0264 0.0821 0.0922 −0.0264 0.0825 0.0922
AGE 0.0040 0.0503 0.0504 0.0040 0.0500 0.0504
BMI −0.0113 0.0427 0.0447 −0.0113 0.0428 0.0447
CHRDS −0.0506 0.0914 0.1072 −0.0506 0.0922 0.1072
SMOK 0.0047 0.0931 0.0915 0.0047 0.0938 0.0917

Intercept

scad

0.0143 0.1126 0.1092

alasso

0.2687 0.2780 0.2790
SEX −0.0265 0.0823 0.0923 −0.1890 −0.1951 −0.1957
AGE 0.0041 0.0502 0.0505 −0.0839 −0.0872 −0.0876
BMI −0.0124 0.0428 0.0489 −0.1032 −0.1029 −0.1029
CHRDS −0.0511 0.0921 0.1073 −0.2226 −0.2285 −0.2291
SMOK 0.0048 0.0932 0.0916 −0.1605 −0.1671 −0.1678

education is less than postsecondary and 1 otherwise), INC (0 for low income and 1 for medium/high income), LIVING (0
if living alone, 1 if living with spouse or others), ACTIVITY (1 if active and 0 otherwise) and ACH (1 if regular drinker, 0 if
occasional or non-drinker). These variables are simulated using some conditional probabilities within age–sex groups. A
similar simulation design is used in [2] to compare the properties of some variance estimators.

We generate a finite population of 25,000 individuals, which has some of the characteristics of the Canadian NPHS
subpopulation of elderly people, aged 65 and more. Several variables, not used in model (15), URBRUR, EDU and INC, are
used to define a ‘‘natural’’ cluster structure of the simulated finite population. Following [2], a fictional propensity score of
ACC (accessibility) to medical care facilities is defined as

pr (ACC) = {1 + exp (2 + 2.5 ∗ URBRUR − 0.8 ∗ EDU − 0.75 ∗ INC + 1.0 ∗ LOSS)}−1

for each individual. The individual records are placed into four classes according to the value of their accessibility score, as
shown in Table 7.

The records are sorted according to the accessibility class, but with random order within the class. We then arrange
the finite population into clusters whose sizes are generated as random integers between 30 and 50, using the uniform
distribution U(30, 50). Clustering resulted in 628 clusters. In this way, individuals with similar values of ‘‘accessibility’’ are
placed in the same cluster.

We consider one-stage cluster sampling. A sample of clusters is selected without replacement with selection probability
proportional to the cluster size using the ‘‘Sampford’’ method in SAS procedurePROC SURVEYSELECT.We select 50 clusters
from the above population, and repeat the selection 500 times to get 500 samples of 50 clusters.

We apply the proposed variable selection procedures to the selected sample. The covariates in the full model include all
the 11 variables described above: SEX, AGE, BMI, CHRDS, SMOK, URBRUR, EDU, INC, LIVING, ACTIVITY and ACH. The true
submodel only contains the first five variables. The selection results are summarized in Table 8, and the estimation results,
including the design bias (BIAS), the EF-bootstrap standard error (SDEF) and the root mean squared error (RMSE), are listed
in Table 9. We do not observe big difference among three correlation structures in Tables 8 and 9. This is not unexpected
because only two cycles of the data are simulated.

Following a referee’s suggestion, we have also carried out simulations for longitudinal surveys with a large number of
covariates, for example, d = 50 for n = 100 sampled individuals and d = 100 for n = 200 sampled individuals. We find
that our proposed variable selection method still performs well for high dimensional longitudinal surveys. Due to the space
limitation, the detailed results are omitted.
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5. Discussion

In this paper, we show, both theoretically and empirically, the properties of the survey-weighted penalized GEE
estimators for longitudinal surveys. The results can be extended to other penalized estimators defined as the solution to
a system of equations based on complex survey designs. To obtain the oracle property, we need to make a number of
technical assumptions [1], for example, the assumptions of existence of moments for the superpopulation, assumptions
about the functions defining the estimator and assumptions about the design. Our results show that survey weights should
be accounted in our variable selection and estimation approach for the analysis of longitudinal surveys when the sampling
design is informative,which is parallel to the findings in [3]. Furthermore, our simulation studies indicate that the estimating
function bootstrap works well for moderate sample sizes. While the weights used in the main theorem are the design
weights, alternative weights are also possible. How to weight the survey data wisely in order to select the best model would
be an interesting future research topic. In addition, we find that the working covariance matrix is less important for model
selection than for the estimation of the standard error for the coefficients and the simultaneous consideration of correlation
with high dimensionality and the characteristics of sampling design presents great challenges in our survey analysis. As a
result, we would like to leave the covariance matrix selection problem for future research.
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Appendix

A.1. Technical details

In this appendix, we derive the asymptotic properties ofβ. Denote by Ep[·] the expectation with respect to the sampling
design. Let Ui (β) = yi − µ (xiβ) and zi = wiIi − 1 = Ii/πi − 1. Let ∇S (β) =

∂

∂βT S (β).

Lemma A.1. If Conditions (C1)–(C4) hold, there exists a positive constant C1 such that,
n
N2

Ep
S 

βN
2

≤ C1.

Proof. Noting that SN

βN


= 0, we can writeS 

βN
2

=
S 

βN

− SN


βN

2
=


i,k∈UN

zizkdT(xi, βN)d(xk, βN),

by Conditions (C1)–(C3), we obtain

n
N2

Ep
S 

βN

− SN


βN

2
=

n
N2

Ep

 
i,k∈UN

zizkdT(xi, βN)d(xk, βN)



≤
n
N2


i,k∈UN

 πik

πiπk
− 1

 dT(xi, βN)d(xk, βN)

≤


n
N

1
a

+
n
a2

max
i≠k

|πik − πiπk|


1
N


i∈UN

∥d(xi, βN)∥2

≤


n
N

1
a

+
n
a2

max
i≠k

|πik − πiπk|

 
1
N


i∈UN

∥d(xi, β0)∥
2
+ o(1)


.

The desired result holds from Condition (C4). �

Lemma A.2. If Conditions (C1)–(C4) hold, there exists a positive constant C2 such that, for any d-dimensional vector a with
∥a∥ = 1,

nEp
aT{H 

βN

− HN


βN


}a

2
≤ C2,

where HN (·) andH (·) are given in (7) and (10), respectively.
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Proof. Note that

aT{H 
βN


− HN


βN


}a =


i∈UN

1
N
ziaTh(xi, β)a.

Using similar arguments in the proof of Lemma A.1, under Conditions (C1) and (C2) we have

nEp|aT{H 
βN


− HN


βN


}a|2 =

n
N2

Ep


i∈UN

ziaTh(xi, βN)a


2

≤


n
N

1
a

+
n
a2

max
i≠k

|πik − πiπk|


1
N


i∈UN

h(xi, βN)
2

.

The desired result follows from Conditions (C3) and (C4). �

A.2. Proof of Theorem 1

We first evaluate the sign of (β − βN)TS(β) on {β : ∥β − βN∥ = C3n−1/2
}. We start with the expansion

(β − βN)TS(β) = (β − βN)TS(βN) + (β − βN)T∇S 
β∗


(β − βN), (A.1)

where β∗
= tβ + (1− t)βN , for some t ∈ [0, 1]. By Lemma A.1, |(β − βN)TS(βN)| ≤ ∥β − βN∥ × Op(N/

√
n) = C3Op(N/n).

For the second term in (A.1), similarly to [20], we can show that

|(β − βN)T{−∇S (β) − NH (β)}(β − βN)| ≤ ∥β − βN∥
2Op(

√
N) = C2

3Op(
√
N/n),

|(β − βN)T{H (β) − H 
βN


}(β − βN)| ≤ ∥β − βN∥

2Op(n−1/2) = C2
3Op(n−1/2).

By Lemma A.2,

|(β − βN)T{H 
βN


− HN


βN


}(β − βN)| ≤ ∥β − βN∥

2Op(n−1/2) = C2
3Op(n−3/2).

By the definition of HN

βN


and Conditions (C3)–(C4),

M1C2
3n

−1
≤ |(β − βN)THN


βN


(β − βN)| ≤ M2C2

3n
−1.

Therefore,

M1C2
3N/n ≤ | − (β − βN)T∇S 

β∗

(β − βN)| ≤ M2C2

3N/n.

Thus, the first term in (A.1) is asymptotically dominated in probability by the second term on {β : ∥β − βN∥ = C3n−1/2
}.

For ε > 0, there exists a constant C3 > 0 such that for all n sufficiently large,

pr


sup

∥β−βN∥=C3n−1/2
(β − βN)TS(β) < 0

 FN


≥ 1 − ε, a.s.,

which is sufficient to ensure the existence of a sequence of rootsβ of (3); see [20]. Hence, we have obtained (i):

lim
C3→∞

lim sup
N→∞

pr

∥β − βN∥ > C3n−1/2

|FN


= 0 a.s.

Next, we establish the asymptotic normality ofβ in (ii). Note that

0 =

√
n

N
S(βN) +

√
nHN(β − βN) + op(1),

which implies that the asymptotic distribution of n1/2(β − βN) is the same as the asymptotic distribution of n1/2N−1H−1
NS(βN). We obtain

n1/2N−1S(βN) = n1/2N−1 S(βN) − SN(βN)


= n1/2N−1

i∈UN

zid(xi, βN),

in which E

n1/2N−1 

i∈UN
zid(xi, βN)

 FN


= 0, and

Var


n1/2

N


i∈UN

zid(xi, β)

 FN


=

n
N2


i,k∈UN

πik − πiπk

πiπk
d(xi, β)dT(xk, β).
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By Condition (C5),

lim
N→∞

n
N2


i,k∈UN

πik − πiπk

πiπk
d(xi, β)dT(xk, βN) = Ω (β) ,

where Ω (β) is positive definite. By the Central Limit Theorem,

n1/2

N

S (β) − SN (β)
 FN → N (0, Ω (β))

in distribution.
Finally, we prove (iii). According to (9), for f > 0, as N → ∞

n1/2(βN − β0) → N (0, fV2)

in distribution. By the above result (ii), we have

n1/2(β − βN)|FN → N (0,V1) (A.2)

in distribution. Let Φ1 (·) and Φ2 (·) denote the normal cumulative distribution function with mean 0 and variance V1 and
fV2, respectively. Further, letΦ3 (·) denote the normal cumulative distribution function withmean 0 and variance V1 + fV2,
which is the convolution of Φ1 (·) and Φ2 (·). We obtainpr n1/2(β − β0) ≤ t


− Φ3 (t)

 =

E 
pr


n1/2(β − β0) ≤ t|FN


− Φ3 (t)

 + o (1) . (A.3)

Let s = t − n1/2(βN − β0), which is a random variable due to βN . Then we haveE 
pr


n1/2(β − β0) ≤ t|FN


− Φ3 (t)

 =

E 
pr


n1/2(β − βN) ≤ s|FN


− Φ3 (t)


≤

E 
pr


n1/2(β − βN) ≤ s|FN


− E {Φ1 (s)}

 + |E {Φ1 (s)} − Φ3 (t)| .

By the Dominated Convergence Theorem and (A.2),

lim
N→∞

E
pr n1/2(β − βN) ≤ s

 FN


− E {Φ1 (s)}


≤ E


lim

N→∞


sup
s

pr n1/2(β1 − βN) ≤ s|FN


− E {Φ1 (s)}


= 0. (A.4)

On the other hand, using the Dominated Convergence Theorem again, we have

lim
N→∞

E {Φ1 (s)} = E


lim
N→∞

Φ1

t − n1/2(βN − β0)


.

Thus, by (9)

lim
N→∞

E {Φ1 (s)} = Φ1 ∗ Φ2 (t) = Φ3 (t) . (A.5)

The desired result then follows from (A.3)–(A.5).

A.3. Proof of Theorem 2

Let β1 be the exact solution to the survey-weighted GEE (3) using the first da auxiliary variables. Let β = (βT
1, 0

T)T,
where 0 is a (d− da)-dim vector. In the following, we show thatβ possesses properties (i)–(v) in the theorem. Applying the
same arguments as that in Theorem 1 to the model with first da variables only, one can show thatβ1 is a design consistent
estimator of βN1, andβ1 is a root-n consistent estimator of β01. Therefore, (i) is seen to be valid.

DenoteS1 andSP
1 the first da-components ofS andSP , respectively. We consider the boundary of a ball around β01,

{β1 ∈ Rda : ∥β1 − β01∥ = C4n−1/2
} for a positive constant C4. Then we have for any β = (βT

1, 0
T)T,

(β1 − β01)
TSP

1 (β) = (β1 − β01)
TS1(β) − (β1 − β01)

TNqλ(β1)sgn(β1)

= (β1 − β01)
TS1((βT

1, 0
T)T) + (β1 − β01)

T
∇S1 

(β∗, 0)T

(β1 − β01)

− (β1 − β01)
TNdiag{q′

λ(|β
∗

j |)sgn(β0j)}(β1 − β01)

= I1 + I2 + I3, (A.6)
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where β∗

j is between βj and β0j, for j = 1, . . . , da. By Lemma A.1,

|I1| = |(β1 − β01)
TS1(β0)| ≤ C4n−1/2

∥S1(β0)∥ ≤ C4C1n−1N.

Using arguments similar to that in the proof of Theorem 1(i), we have

|(β1 − β01)
T
{−∇S1 (β) − HN1(β0)}(β1 − β01)| = C2

4Op(
√
N/n),

and by Conditions (C3)–(C4),

M1C2
4N/n ≤ |(β1 − β01)

THN1(β0)(β1 − β01)| ≤ M2C2
4N/n.

Therefore,

M1C2
4N/n ≤ |I2| ≤ M2C2

4N/n.

By Condition (C6), maxj p′′(|β∗

j |) → 0, so I3 = o(N/n). Thus, for C4 large enough, both I1 and I3 in (A.6) are asymptotically
dominated in probability by I2 on {β1 ∈ Rda : ∥β1 − β10∥ = C4n−1/2

}. For ε > 0, there exists a constant C4 > 0 such that
for all n sufficiently large,

pr


sup

∥β1−β01∥=C4n−1/2
(β1 − β01)

TSP
1 (β) < 0


≥ 1 − ε.

Hence,SP
1 ((βT

1, 0
T)T) = 0 has a solution within this ball. Note thatS1((βT

1, 0
T)T) = 0, and according to Condition (C6)(i), the

penalty term is approximately 0. Furthermore,β satisfies that limN→∞ pr(SP
1 (β) = 0) = 1, which is (ii). Result (iii) is true

sinceβ is constructed in that way.
Next, we show (iv). Note that

n−1/2SP
j (β ± ϵej) = n−1/2Sj(β ± ϵej) −

N
√
n
qλ(|βj ± ϵ|)sgn(βj ± ϵ).

According to Condition (C6), for j = da + 1, . . . , d, the first term is dominated by the second term. Thus, the signs ofSP
j (β ± ϵej) depend on the signs of ∓qλ(ϵ) when ϵ goes to zero. Thus,SP

j (β + ϵej) andSP
j (β − ϵej) have different signs as

ϵ goes to zero.
Finally, we show (v) on the asymptotic normality of the estimator β. Let JN = diag


p′′

λ1
(|β1N |) , . . . , p′′

λd
(|βdN |)


. We

have

0 =

√
n

N
S(βN) −

√
nqλ(βN)sgn


βN


+

√
n


HN + JN + op(1)


(β − βN),

which implies that the asymptotic distribution of n1/2(β − βN) is the same as the asymptotic distribution of
(HN + JN)−1 n1/2

 1
N
S(βN) − qλ(βN)sgn


βN


, as N → ∞. Noting that SN(βN) − Nqλ(βN)sgn


βN


= 0, we obtain

n1/2

1
N

S(βN) − qλ(βN)sgn

βN


=

n1/2

N

S(βN) − SN(βN)


=
n1/2

N


i∈UN

zid(xi, βN).

By the Central Limit Theorem,

n1/2N−1 S (β) − SN (β)
 FN → N (0, Ω (β))

in distribution. Finally, we prove (iii). According to (9), for f > 0

n1/2 
βN1 − β01 + (HN1 + J01)−1 q01


→ N (0, fV22)

in distribution. By Theorem 1, we have

n1/2(β1 − βN1)|FN → N (0,V11)

in distribution. Let Φ11 (·) and Φ22 (·) denote the normal cumulative distribution function with mean 0 and variance V11
and fV22, respectively. Further, let Φ33 (·) denote the normal cumulative distribution function with mean 0 and variance
V11 + f V22, which is the convolution of Φ11 (·) and Φ22 (·). We obtainpr n1/2

β1 − β01 + (HN1 + J1)−1 q01


≤ t


− Φ33 (t)


=

E 
pr


n1/2

β1 − β01 + (HN1 + J1)−1 q01


≤ t

 FN


− Φ33 (t)

 + o (1) . (A.7)
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Let s = t − n1/2

βN1 − β01 + (HN1 + J01)−1 q01


, which is a random variable due to βN1. Then we haveE 

pr

n1/2

β1 − β01 + (HN1 + J1)−1 q01


≤ t

 FN


− Φ33 (t)

 =

E 
pr


n1/2(β1 − βN1) ≤ s|FN


− Φ33 (t)


≤

E 
pr


n1/2(β1 − βN1) ≤ s|FN


− E {Φ11 (s)}

 + |E {Φ11 (s)} − Φ33 (t)| .

By the Dominated Convergence Theorem and (A.2),

lim
N→∞

E
pr n1/2(β1 − βN1) ≤ s|FN


− E {Φ11 (s)}


≤ E


lim

N→∞


sup
s

pr n1/2(β1 − βN1) ≤ s|FN


− E {Φ11 (s)}


= 0. (A.8)

On the other hand, using the Dominated Convergence Theorem again, we have

lim
N→∞

E {Φ11 (s)} = E


lim
N→∞

Φ11

t − n1/2 

βN1 − β01 + (HN1 + J01)−1 q01


.

Thus, by (9) we obtain

lim
N→∞

E {Φ11 (s)} = Φ11 ∗ Φ22 (t) = Φ33 (t) . (A.9)

The desired result then follows from (A.7)–(A.9).

References

[1] D.A. Binder, On the variances of asymptotically normal estimators from complex surveys, Internat. Statist. Rev. 51 (1983) 279–292.
[2] D.A. Binder, M.S. Kovacevic, G. Roberts, Design-based methods for survey data: alternative uses of estimating functions, in: Proceedings of the Survey

Research Methods Section, American Statistical Association, American Statistical Association, Washington, DC, 2004, pp. 3301–3312.
[3] I. Carrillo, J. Chen, C. Wu, The pseudo-GEE approach to the analysis of longitudinal survey, Canad. J. Statist. 38 (2010) 540–554.
[4] R.L. Chambers, C. Skinner, S. Wang, Intelligent calibration, Bull. Int. Statist. Inst. 58 (1999) 321–324.
[5] R.G. Clark, R.L. Chambers, Adaptive calibration for prediction of finite population totals, Surv. Methodol. 34 (2008) 163–172.
[6] J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc. 96 (2001) 1348–1360.
[7] W.J. Fu, Penalized estimating equations, Biometrics 59 (2003) 126–132.
[8] W.A. Fuller, Sampling Statistics, John Wiley and Sons, Hoboken, New Jersey, 2009.
[9] D.R. Hunter, R. Li, Variable selection using MM algorithms, Ann. Statist. 33 (2005) 1617–1642.

[10] B. Johnson, D.Y. Lin, D. Zeng, Penalized estimating functions and variable selection in semiparametric regression models, J. Amer. Statist. Assoc. 103
(2008) 672–680.

[11] K.Y. Liang, S.L. Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986) 13–22.
[12] L. Martel, A. Bélanger, J.M. Berthelot, Loss and recovery of independence among seniors, Health Rep. 13 (2002) 35–48.
[13] J.N.K. Rao, Marginal modeling for repeated observations: inference with survey data, in: Proceedings of the Survey Research Methods Section,

American Statistical Association, American Statistical Association, Washington, DC, 1998, pp. 76–82.
[14] J.N.K. Rao, M. Tausi, Estimating function jackknife variance estimators under stratified multi-stage sampling, Commun. Stat.—Theory Methods 33

(2004) 2087–2095.
[15] J.N.K. Rao, C.F.J. Wu, K. Yue, Some recent work on resampling methods for complex surveys, Surv. Methodol. 18 (1992) 209–217.
[16] P.L.N. Silva, C. Skinner, Variable selection for regression estimation in finite populations, Surv. Methodol. 23 (1997) 23–32.
[17] B.C. Sutradhar, M. Kovacevic, Analysing ordinal longitudinal survey data: generalised estimating equations approach, Biometrika 87 (2000) 837–848.
[18] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B 58 (1996) 267–288.
[19] R. Tibshirani, The LASSO method for variable selection in Cox model, Stat. Med. 16 (1997) 385–395.
[20] L. Wang, GEE analysis of clustered binary data with diverging number of covariates, Ann. Statist. 39 (2011) 389–417.
[21] L. Wang, S. Wang, Nonparametric additive model-assisted estimation for survey data, J. Multivariate Anal. 102 (2011) 1126–1140.
[22] H. Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc. 101 (2006) 1418–1429.

http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref1
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref2
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref3
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref4
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref5
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref6
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref7
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref8
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref9
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref10
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref11
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref12
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref13
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref14
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref15
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref16
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref17
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref18
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref19
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref20
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref21
http://refhub.elsevier.com/S0047-259X(14)00115-8/sbref22

	Variable selection and estimation for longitudinal survey data
	Introduction
	Methodology
	General setting
	Census GEE and survey-weighted GEE
	Penalized survey-weighted GEE
	Asymptotic results

	Implementation
	Algorithm and choice of tuning parameters
	Standard error estimation

	Simulation studies
	Example 1: simple random sampling design
	Example 2: stratified cluster sampling design
	Example 3: Canadian National Population Health Survey

	Discussion
	Acknowledgments
	Appendix
	Technical details
	Proof of Theorem 1
	Proof of Theorem 2

	References


