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a b s t r a c t

Single-index models are useful and fundamental tools for handling ‘‘curse of dimen-
sionality’’ problems in nonparametric regression. Along with that, variable selection also
plays an important role in such model building process when the index vectors are high-
dimensional. Several procedures have been developed for estimation and variable selec-
tion for single-index models when the number of index parameters is fixed. In many
high-dimensional model selection problems, the number of parameters is increasing along
with the sample size. In this work, we consider weakly dependent data and propose a
class of variable selection procedures for single-index prediction models, which are ro-
bust against model misspecifications. We apply polynomial spline basis function expan-
sion and smoothly clipped absolute deviation penalty to perform estimation and variable
selection in the framework of a diverging number of index parameters. Under stationary
and strong mixing conditions, the proposed variable selection method is shown to have
the ‘‘oracle’’ property when the number of index parameters tends to infinity as the sam-
ple size increases. A fast and efficient iterative algorithm is developed to estimate param-
eters and select significant variables simultaneously. The finite sample behavior of the
proposed method is evaluated with simulation studies and illustrated by the river flow
data of Iceland.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For the past two decades, high dimensional problem is becoming increasingly popular in many scientific areas including
biostatistics, medicine, economics and financial econometric. When the dimension of covariates is getting higher, one
unavoidable issue is the ‘‘curse of dimensionality’’, which refers to the poor convergence rate. Lots of efforts have been
devoted to tackle of this difficulty. As an attractive dimension reduction method, single-index models (SIMs) play a useful
and fundamental role for handling ‘‘curse of dimensionality’’ problems. Various intelligent estimators of the single-index
coefficients have been derived by lots of researchers. Examples can be found in Powell et al. (1989), Härdle and Stoker
(1989), Carroll et al. (1997), Xia and Li (1999) and Hristache et al. (2001). Xia et al. (2002) introduced the minimum average
variance estimation (MAVE) for several index vectors. Wang and Yang (2009) proposed the polynomial spline estimator
for the single-index prediction model which is more robust against deviations from SIMs. Chang et al. (2010) studied the
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SIMs with heteroscedastic errors and recommended an estimating equationmethod in terms of transferring restricted least
squares to un-restricted least squares. Zhang et al. (2010) derived inference for the index parameters by the local linear
method. Cui et al. (2011) suggested an estimating function method to study the SIMs.

Along with the SIMs, when the index vectors are high-dimensional, variable selection for significant predictors is
very practical in such model building process. For example, in time series modeling, we often need to select significant
explanatory lagged variables. Most traditional variable selection procedures, such as Akaike’s information criterion (AIC),
Mallow’s Cp and the Bayesian information criterion (BIC), use a fixed penalty on the size of a model. To overcome the
inefficiency of traditional variable selection procedures, Fan and Li (2001) proposed a unified approach via non-concave
penalized likelihood and demonstrated that penalized likelihood estimators are asymptotically as efficient as the ideal
‘‘oracle’’ estimator for certain penalty functions, such as the smoothly clipped absolute deviation (SCAD) penalty. Fan and
Peng (2004) further extended the method to the situation with a diverging number of parameters, which substantially
enlarges the scope of applicability of the shrinkagemethods.We refer to Fan and Peng (2004), Huang et al. (2008) andWang
et al. (2012) for more works in the high-dimensional framework where the number of covariates increases with the sample
size.

Several procedures have been developed for estimation and variable selection for SIMs when the number of index
parameters is fixed. Examples include the dissected cross-validation (DCV) method in Kong and Xia (2007), the profile least
squares (PrLS) estimation procedure in Liang et al. (2010), the adaptive lasso with kernel smoothing in Zhu et al. (2011),
the penalized least squares method in Peng and Huang (2011), and the lasso with local linear smoothing method in Zeng
et al. (2012). Unfortunately, in practice, many variables can be introduced to reduce possible modeling biases. Inmany high-
dimensional model selection problems, the number of introduced variables depends on the sample size, which reflects the
ensilability of the parametric problem. For example, when running regressions on time-series data, it is often important to
includemany lagged values of the dependent variable as predictor variables. Sometimes, to capture the persistence of a time
series, the lag length can be very long, or even close to the length of time series.

When a diverging number of predictors are involved in SIM, Zhu and Zhu (2009) proposed amethod based on slice inverse
regression (SIR) to select variables. However, the SIR based method imposes a strong assumption on the predictors: the
distribution of the covariates need to be elliptically symmetric distributions. In time series analysis, usually, the covariates
are the lagged values of a time series. As discussed in Xia et al. (2002), the elliptical symmetry of the covariates implies
the time series itself is time reversible (Tong, 1990), which is an exception feature in time series analysis, therefore, their
method would not work for many time series data; see the discussions in Xia et al. (2002) and Peng and Huang (2011).

In this work, we consider weakly dependent data and focus on variable selection and estimation for single-index
prediction models introduced by Wang and Yang (2009), which are robust against model misspecifications. We apply the
SCAD penalty and polynomial spline basis function expansion to perform variable selection and estimation simultaneously
in the framework of a diverging number of indexparameters. Under amixing condition and someother regularity conditions,
the proposed variable selection method is shown to have the ‘‘oracle’’ property when the number of parameters diverges as
the sample size increases. A fast and efficient algorithm is developed to estimate parameters and select significant variables
simultaneously. Our method is applicable to selecting significant variables when modeling time series data which may
include endogenous variables (lagged variables) as well as exogenous variables.

The rest of the paper is organized as follows. Section 2 first provides the background of the single-index predictionmodel,
then introduce the polynomial spline smoothing and the penalized SCAD estimators. Section 3 shows the main theoretical
results in the framework of a diverging number of index parameters. Section 4 presents an algorithm to implement the
proposed method. Section 5 reports our findings in three simulation studies. The proposed method is applied in Section 6
to the river flow data of Iceland. Section 7 provides concluding remarks and discussion. All technical proofs are given in the
Appendix.

2. Methodologies

2.1. Single-index prediction model

Let {Xi, Yi}
n
i=1 be a length n realization of a (d+ 1)-dimensional (strictly) stationary process with Xi =


Xi,1, . . . , Xi,d


being Rd valued (d ≥ 1) and Yi being real valued. In particular, Xi may consist of lagged values of Yi, and Xi can also include
some exogenous variables. Let m(x) = E(Yi|Xi = x), x ∈ Rd, be the d-variate regression function. We assume {Xi, Yi}

n
i=1

follow the heteroscedastic model

Yi = m (Xi)+ σ (Xi) εi, m (Xi) = E (Yi|Xi) , i = 1, 2, . . . , n,

in which E (εi|Xi) = 0, E

ε2i |Xi


= 1. The function σ(·) is an unknown standard deviation of the response Yi conditional on

the predictor vector Xi. In what follows, let

XT , Y , ε


have the stationary distribution of


XT
i , Yi, εi


.

It is well known that nonparametric estimation suffers from the ‘‘curse of dimensionality’’. One way to overcome the
difficulty is to impose some structure on the unknown regression functionm. For example, the single-index models assume
that m(x) = g(xT θ0). If the model is misspecified, i.e., m is not a genuine single-index function, the estimation of θ0 might
be biased and a goodness-of-fit test is often needed in this case. In this paper, instead of presuming that underlying true
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function m is a single-index function, we consider the robust single-index prediction (SIP) model introduced by Wang and
Yang (2009), in which one estimates a univariate function g that optimally approximates the multivariate functionm in the
sense that

g (ν) = E

m (X) |XT θ0 = ν


, with ∥θ0∥ = 1, (1)

where ∥θ0∥ is the usual Euclidean norm for θ0. In (1), the unknown parameter θ0 is the single-index coefficient used for
simple interpretation once estimated, and g is a smooth but unknown function used for further data summary.

2.2. Estimation and variable selection for SIP

The dimension d of predictors can be large, and here we consider the case that d increases as the sample size n, so we
write it as dn. The goal of this paper is to select a proper subset of significant variables {Xi,j, j ∈ s}, s ⊂ {1, . . . , dn} while
estimating θ0 ∈ Θ = {(θ1, . . . , θdn)|

dn
j=1 θ

2
j = 1, θ1 > 0} and g simultaneously.

For simplicity, given a fixed θ , denote Xθ = XT θ , Xθ,i = XT
i θ , 1 ≤ i ≤ n. Let

mθ (Xθ ) = E (Y |Xθ ) = E {m (X) |Xθ } , (2)

and θ0 be the minimizer of the following population least squares criterion function

R (θ) =
1
2
E

{Y −mθ (Xθ )}2


=

1
2
E {m (X)−mθ (Xθ )}2 +

1
2
Eσ 2 (X) . (3)

To select significant variables, we need some nonparametric techniques to estimate the unknown function g in (1). We
consider the use of polynomial spline smoothing in Wang and Yang (2009). The appeal of polynomial splines is that they
often provide good approximations of smoothing functions with a simple linear combination of spline basis; see more
discussions in Xue and Yang (2006). Suppose that each Xi,j, j = 1, . . . , dn, takes value in [a, b], where a and b are some
finite numbers. We divide [a, b] into (N + 1) subintervals. Let {tk}N+rk=1−r be a sequence of points given as

t1−r = · · · = t−1 = t0 = a < t1 < · · · < tN < b = tN+1 = · · · = tN+r

in which tk = kh, k = 1, . . . ,N , are the interior knots, and h = 1/ (N + 1) is the distance between neighboring knots. Let
C (k)[a, b] = {m|the kth order derivative ofm is continuous on [a, b]} that are polynomials of degree r − 1 on each interval
[tk, tk+1), k = 0, . . . ,N . Let Bk,r (u), k = 1−r, . . . ,N , be the spline basis functions of order r , and let Br (u) = {Bk,r(u)}Nk=1−r .

For any given θ , the polynomial spline estimator of order r formθ is

m̂θ (·) = arg min
m(·)∈Γ (r−2)[a,b]

n
i=1


Yi −m


Xθ,i
2
= Br(·)


BT

θBθ

−1 BT
θY (4)

where Y = (Y1, . . . , Yn)
T and Bθ =


Bk,r


Xθ,i
n,N

i=1,k=−(r−1) for any fixed θ .
Note thatΘ is not a compact set, so we consider the minimization problem of (3) over all θ ∈ Θc , where

Θc =


θ1, . . . , θdn


|

dn
j=1

θ2j = 1, θ1 ≥ c


, c ∈ (0, 1).

We define the empirical least squares criterion function of θ as

R̂ (θ) =
1
2n

n
i=1


Yi − m̂θ


Xθ,i
2

.

In practice, many variables can be introduced to reduce possible modeling biases. To perform simultaneous selection and
estimation for the SIP model, we propose minimizing the following penalized sum of squares

Q̂ (θ) = R̂ (θ)+
dn
j=1

pλn(|θj|)I

|θj| ≠ max

1≤k≤dn
(|θk|)


, (5)

which shrinks small components of estimated functions to zero. Note that the above minimization in (5) is for all θ ∈ Θc ,
so we do not penalize the largest element of θ .

Fan (1997) proposed a continuous differentiable penalty function called SCAD penalty, which is defined by

p′λ(θ) = λ

I(θ ≤ λ)+

(aλ− θ)+
(a− 1)λ

I(θ > λ)


for some a > 2 and θ > 0. In this paper, we consider the SCAD penalty, and a = 3.7 is used as suggested in Fan and Li
(2001).



4 G. Wang, L. Wang / Journal of Statistical Planning and Inference 162 (2015) 1–19

The penalized estimator of the SIP coefficient θ0 is then defined as follows:

θ̂ = arg min
θ∈Θc

Q̂ (θ) ,

and the polynomial spline estimator of order r for g is m̂θ with θ replaced by θ̂ , i.e.

ĝ (·) = arg min
m(·)∈Γ (r−2)[0,1]

n
i=1


Yi −m(Xθ̂ ,i)

2
.

3. Main results

In this section, we establish the asymptotic properties of the estimators for the penalized SIP model in the following
theorems. We only state the main results here. The regularity conditions and proofs are given in the Appendix.

Note that one can always arrange the predictors, Xi,1, . . . , Xi,dn , in a non-increasing order of |θ0,1|, . . . , |θ0,dn |. Without
loss of generality, we assume θ0 belongs to a compact set

Θc =


θ1, . . . , θdn


|

dn
j=1

θ2j = 1, |θ1| ≥ |θ2| ≥ · · · ≥ |θdn |, θ1 ≥ c


, c ∈ (0, 1).

For θ0 ∈ Θc , let sn be the number of nonzero components of θ0. Write θ0 = (θ0,1, . . . , θ0,dn)
T
= (θ T01, θ

T
02)

T , where θ01
consists of all sn nonzero components of θ0, and θ02 ≡ 0. Further we denote θ∗01 = (θ0,2, . . . , θ0,sn)

T . Similarly, we define θ∗,
θ̂∗ and θ∗0 as the regular θ vectors but without the first element.

Note that for fixed θ ∈ Θc , the least squares criterion function R (θ) depends only on θ∗, so in the following with a slight
abuse of notation, we use R(θ∗) and R̂(θ∗) instead of R(θ) and R̂(θ). Similarly, we write Q (θ∗) and Q̂ (θ∗) rather than Q (θ)
and Q̂ (θ) respectively.

The first theorem provides the existence and consistency of the penalized estimator when dn diverges.

Theorem 1 (Existence of Penalized Local Minimizer). Suppose Conditions (A1)–(A7) and (P2)–(P4) in the Appendix are satisfied.
If dn ∼ nδ for some 0 < δ < 1/4(1 − 3/(2r + 1)), then there is a local minimizer θ̂∗ of Q̂ (θ∗) such that ∥θ̂∗ − θ∗0 ∥ =
OP{d

1/2
n (n−1/2N3/2 log(n)+ an)}, where an = max1≤j≤sn−1{p

′

λn
(|θ∗0,j|), θ

∗

0,j ≠ 0}.

Remark 1. Note that Fan and Peng (2004) assume that dn = o(n1/4) for linear regression models with independent data,
and our condition on dn ∼ nδ (0 < δ < 1/4(1 − 3/(2r + 1))) for single-index models with weakly dependent data is in
parallel with their requirement.

Let

S

θ∗

=

∂

∂θ∗
R

θ∗

, H


θ∗

=

∂2

∂θ∗∂θ∗T
R

θ∗

,

and denote S, H and ṁj the value of S (θ∗), H (θ∗) and ∂
∂θj

mθ evaluated at θ∗ = θ∗0 . We further define

6λn = diag{p′′λn(|θ
∗

0,1|), . . . , p
′′

λn
(|θ∗0,sn−1|)}

and

bn = {p′λn(|θ
∗

0,1|)sgn(θ
∗

0,1), . . . , p
′

λn
(|θ∗0,sn−1|)sgn(θ

∗

0,sn−1)}.

Theorem 2 shows that the ‘‘oracle’’ property holds for the penalized estimator when dn diverges.

Theorem 2. Assume Assumptions (A1)–(A8) and (P1)–(P4) in the Appendix are satisfied. If dn ∼ nδ for some 0 < δ <

1/5(1−3/(r−1)), λn → 0 and d−1/2n n1/2N−3/2λn →∞, then, with probability tending to 1, the consistent local minimizer θ̂ =
1− ∥θ̂∗1 ∥

2

−∥θ̂2∥
2
1/2

, θ̂∗T1 , θ̂
T
2

T

in Theorem 1must satisfy:

1. (Sparsity) θ̂2 = 0.
2. (Asymptotic normality) Let An be a q× (sn − 1) matrix such that AnAT

n converges to a nonnegative symmetric q× q matrix
6A. Then

√
nAn�

−1/2

(θ̂∗1 − θ

∗

01)+

H+ 6λn

−1 bn→ N (0,6A)
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in distribution, where � = (H+ 6λn)
−19(H+ 6λn)

−1, 9 =

ψjk
sn−1
j,k=1 with

ψjk =

∞
i=−∞

E


ṁj − θ
∗

0,jθ
−1
0,1 ṁ1

 
Xθ0,1

 
ṁk − θ

∗

0,kθ
−1
0,1 ṁ1

 
Xθ0,1+i


ξ1ξ1+i


for any j, k = 1, . . . , sn − 1, and ξi = g


Xθ0,i


− Yi for i ≥ 1.

Remark 2. When {Xi, Yi}
n
i=1 are i.i.d.,

ψjk = E


ṁj − θ
∗

0,jθ
−1
0,1 ṁ1

 
ṁk − θ

∗

0,kθ
−1
0,1 ṁ1

 
Xθ0

ξ 2i


for any j, k = 1, . . . , sn − 1.

Remark 3. Our condition on the number of index variables dn ∼ nδ(0 < δ < 1/5(1−3/(r−1))) is analog to the assumption
in Fan and Peng (2004), in which they require δ < 1/5 for linear regressionmodels when the observations are independent.
We require 0 < δ < 1/5(1 − 3/(r − 1)) term because we need to consider the smoothness of the link function and the
approximation power of polynomial splines.

The results in Theorems 1, 2 and Lemma A.3 in the Appendix lead to the following Corollary 1.

Corollary 1. Assume Assumptions (A1)–(A7) and (P2)–(P4) in the Appendix are satisfied. If dn = nδ for some 0 < δ <
1/5(1− 3/(r − 1)), then

sup
x
|ĝ(x)− g(x)| = O{n−1/2N1/2 log(n)+ N−r}.

4. An algorithm

Following Wang and Yang (2009), for any fixed θ and predictor Xi, we define the transformed variable of Xθ,i by letting
Uθ,i = Fd


Xθ,i

, 1 ≤ i ≤ n, where Fd is a re-scaled centered Beta {(d+ 1) /2, (d+ 1) /2} cumulative distribution function,

i.e.

Fd (v) =
 v/a

−1

Γ (d+ 1)
Γ {(d+ 1) /2}2 2d


1− t2

(d−1)/2
dt, v ∈ [−a, a] .

Wang and Yang (2009) show that the probability density function of the transformed Xθ is bounded below and above
uniformly for all θ ∈ Θc . Under such distribution, it is reasonable to use equally-spaced knots when applying spline
smoothing.

For any ν ≤ r− 2, k = 1− r, . . . ,N , let B(ν)k,r (u) be the νth order derivative of Bk,r (u)with respect to u, and let B(ν)r (u) =
{B(ν)k,r (u)}

N
k=1−r . According to B-spline property in deBoor (2001), B(ν)r (u) = DT

(ν)Br−ν (u), where D(ν) = D1 · · ·Dν−1Dν , with
matrix

Dl = (r − l)



−1
t1 − t1−r+l

0 0 · · · 0 0

1
t1 − t1−r+l

−1
t2 − t2−r+l

0 · · · 0 0

0
1

t2 − t2−r+l

−1
t3 − t3−r+l

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0
1

tN+r−l − tN


, 1 ≤ l ≤ ν.

Next we denote two n × (N + r)matrices Ḃj =


B(1)r


Uθ,i


Ḟd

Uθ,i


Xi,j

n
i=1

and B̈jj′ = [{B
(2)
r

Uθ,i


Ḟ 2
d


Uθ,i


+ B(1)r


Uθ,i


F̈d

Uθ,i


}Xi,jXi,j′ ]

n
i=1. For any fixed θ , let Pθ = Bθ


BT
θBθ

−1 BT
θ be the projection matrix onto the polynomial spline space

Γ
(r−2)
n . For any j, j′ = 1, . . . , dn, let Ṗj and P̈jj′ be the first and second order partial derivatives of Pθ with respect to θj and
θj′ . Simple algebra shows that

Ṗj = (I− Pθ ) Ḃj

BT
θBθ

−1 BT
θ ,

P̈j,j′ = (I− Pθ ) {B̈j,j′ − Ḃj

BT
θBθ

−1 BT
θ Ḃj′}


BT
θBθ

−1 BT
θ + {(I− Pθ ) Ḃj − Bθ (BT

θBθ )
−1ḂjBθ }


BT
θBθ

−1 ḂT
j′ (I− Pθ )

− Bθ

BT

θBθ
−1 ḂT

j (I− Pθ ) Ḃj′

BT
θBθ

−1 BT
θ .
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Then the score vector

Ŝ

θ∗

=

∂

∂θ∗
R̂

θ∗

= −

1
n

n
i=1

Ŝi(θ∗) = −
1
n


Y T ṖjY − θjθ−11 Y T Ṗ1Y

dn
j=2 ,

and the Hessian matrix

Ĥ

θ∗

=

∂2

∂θ∗∂θ∗T
R̂

θ∗

= −

1
n


Y T P̈j,j′Y − θ−11


θj′Y T P̈j,1Y + θjY T P̈1,j′Y

dn
j,j′=2

+
1
n
{Y T Ṗ1Y (θ−11 I+ θ−31 θ∗θ∗T )− Y T P̈1,1Y (θ−21 θ∗θ∗T )}.

In addition, given a tuning penalty parameter λ, we denote

6λ


θ∗

= diag


p′λ

|θ∗1 |


ε + |θ∗1 |

, . . . ,
p′λ

|θ∗dn−1|


ε + |θ∗dn−1|


, ε is a small number,

which is an approximation of 6λn and

bλ

θ∗

=

p′λ
θ∗1  sgn θ∗1  , . . . , p′λ θ∗dn−1 sgn θ∗dn−1T .

We outline our algorithm based on the local quadratic approximation (Fan and Li, 2001) to solve the penalized least squares
problem in (5). Note that the unpenalized estimator of Wang and Yang (2009) is still consistent if spline basis functions are
appropriately chosen, thus we use it as the initial value in our estimating algorithm. To satisfy the assumption θ ∈ Θc , for
small c = 10−6, we first arrange θ̃j and Xi,j, j = 1, . . . , dn, according to the non-increasing order of the absolute values of θ̃j.
Then we set θ̂ (0) = sgn(θ̃1)× θ̃/∥θ̃∥, where sgn(θ̃1) is the sign of the first parameter in the rearranged θ̃ . Using this initial
estimator θ̂ (0), iterates through the following steps.

1. k← k+ 1.
2. By the local quadratic approximations for penalty functions, a better approximation is given by

θ̂∗(k) = θ̂∗(k−1) −

Ĥ(θ̂∗(k−1))+ 6λ(θ̂

∗(k−1))
−1 

Ŝ(θ̂∗(k−1))+ bλ(θ̂∗(k−1))

.

3. If ∥θ̂∗(k)∥ >
√
1− c2, then θ̂∗(k) = θ̂∗(k)/∥θ̂∗(k)∥ ×

√
1− c2.

4. Set the first index parameter θ̂ (k)1 =


1− ∥θ̂∗(k)∥2.

5. If θ̂ (k)j is close to 0, say |θ̂ (k)j | < δ1, for a small number δ1 (for example, δ1 = 10−3), then we set θ̂ (k)j = 0. Rescale
θ̂ (k) = (θ̂

(k)
1 , θ̂∗(k)T )T by θ̂ (k) = θ̂ (k)/∥θ̂ (k)∥.

6. Obtain the difference between θ̂ (k) and θ̂ (k−1): diffθ = ∥θ̂ (k) − θ̂ (k−1)∥.
7. Arrange θ̂ (k) and the predictors in a non-increasing order of |θ̂ (k)| and set θ̂ (k) = sgn(θ̂ (k)1 )× θ̂ (k).
8. Repeat Steps 1 and 7 until we have diffθ < δ2, for a small number δ2 (for example, δ2 = 10−6).

Tuning parameter plays an important role in the performance ofmodel selection. It iswell known that for a fixed predictor
dimension, the SCAD estimator can identify the true model consistently when one chooses the tuning parameter using a
BIC-type criterion. For example, Liang et al. (2010) show that BIC can identify the true model consistently for penalized
partially linear single-index models. However, as shown in Wang et al. (2009), the traditional BIC does not work very well
for diverging number of parameters because the number of candidate models increases rapidly and can easily exceeds the
sample size. To overcome this challenge, in this paper, we adopt the modified BIC approach proposed byWang et al. (2009)
to select the tuning parameter. Suchmodified BIC has been proved to be consistent in model selection evenwith a diverging
number of parameters.

Let θ̂λ and dλ be the estimator and the effective number of parameters in the last iteration of the our algorithm above,
respectively. Then the modified BIC can be defined as

BIC (λ) = log

R̂(θ̂λ)


+ dλn−1 log (n) Cn.

In our simulations and application, we choose Cn to be log{log(dn)} as suggested in Wang et al. (2009).
The spline approximation for the regression function requires an appropriate selection of the knot sequences. For the

ease of computation, we consider equally spaced knots after conducting the transformation introduced in the above. Note
that Assumption A.6 requires n1/{2(r−1)}

≪ N ≪ min{n1/6 log−2/3(n)d−5/6n , n1/8 log−1/2(n)d−3/8n } for some integer r > 5.
Therefore, we choose r = 6 for the simulations and real data application in the paper. In our numerical studies, we find that
the variable selection result is less sensitive to the choice N compared with the function estimation result, so we suggest
the following simple formula to compute the number of interior knots:

N = [τn1/{2(r−1)} log n],
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for some positive tuning parameter τ . For example, τ ∈ [0.5, 1] usually works very well, and in our simulations and
application below, we choose τ = 0.8.

The standard errors for the estimated parameters can be obtained as follows. Given a PSIP estimator θ̂∗, a good estimator
of Ψ is given by

Ψ̂ =


1≤i,i′≤n

(n− |i− i′|)−1Ŝi(θ̂∗)ŜTi′ (θ̂
∗). (6)

When {Xi, Yi}
n
i=1 are i.i.d., the above estimator can be reduced to

Ψ̂ =
1
n

n
i=1

Ŝi(θ̂∗)ŜTi (θ̂
∗).

Our limited simulation results indicate that this variance estimator performs very well.

5. Simulations

In this section, three simulation studies are carried out to illustrate the finite-sample behavior of our estimation and
variable selection method for the SIP models. All the codes for these simulations are written in R and the computing
environment is x64 PC with Intel Dual Core i5.

5.1. Example 1

We consider a similar example to Example 1 in Wang and Yang (2009), and let

Yi = m(Xi)+ σ0εi, i = 1, . . . , n,

m(x) =
5

j=1

xj + exp

−


5
j=1

xj

2
+ δ


5

j=1

x2j

1/2

,

where Xi’s are generated from a d-variate standard normal distribution, εi’s are generated fromN(0, 1), and σ0 = 0.5.When
δ = 0, the underlying true functionm can be written as

m(x) =
√
5xT θ0 + exp{−5(xT θ0)2},

where θ T0 = (1, 1, 1, 1, 1, 0, . . . , 0)/
√
5. It is obvious thatm is a genuine single-index in this case. In contrast, if δ ≠ 0,m is

not a single-index function.
For both δ = 0 and δ = 1, we draw 500 random samples of size n = 100, 200 with number of predictors d = 25,

50, 100. The variable selection and estimation results are summarized in Tables 1 and 2, respectively. In Table 1, the col-
umn labeled ‘‘TPN’’ presents the average number of zero restricted only to the true zero coefficients, ‘‘FPN’’ shows the average
number of zero coefficients erroneously set to zero, and ‘‘C’’ demonstrates the percentage of which the correct model has
been chosen. The ‘‘oracle’’ (ORACLE) method always identify the five non-zero coefficients and d − 5 zero coefficients cor-
rectly. Themedians ofmodel errors (MMEs), (θ̂−θ0)TE(XTX)(θ̂−θ0), of the ‘‘oracle’’ estimators and our penalized estimators
(PSIP) are used to measure the effectiveness of the methods. In addition, Table 1 also provides the average computing time
(‘‘TIME’’) in seconds and the average number of iterations (‘‘ITER’’) of our PSIP method. Table 2 presents the bias (BIAS),
standard error (SD) and the mean squared error (MSE) of the estimates of θ0.

Tables 1 and 2 confirm the theoretical results of variable selection and estimation provided in Section 3 for both δ = 0
and δ = 1. This suggests that the proposed method is robust against deviations from the genuine single-index models.

5.2. Example 2

In this example, we compare our method (PSIP) with the penalized least squares (PLS) method (Peng and Huang, 2011)
and the penalized slice inverse regression (PSIR) method (Zhu and Zhu, 2009). We consider the following heteroscedastic
regression model with

m(x) = sin
π
4
xT θ0


, σ (x) = σ0


5− exp(∥x∥/

√
d)


5+ exp(∥x∥/
√
d)

. (7)

Here Xi = {Xi,1, . . . , Xi,d}
T , εi’s are independently and identically distributed as N(0, 1), for all i = 1, . . . , n and σ0 = 0.2. In

this simulation, the true parameter is θ T0 = (1, 1, 1, 1, 1, 0, . . . , 0)/
√
5, i.e., the first five elements of θ0 are 1/

√
5 and the

remaining d − 5 elements are zero. We consider the selection and estimation for model (7) with d = 25, 50, or 100 which
is smaller than or close to the sample size. We draw 100 and 200 samples and implement 500 Monte Carlo experiments.
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Table 1
Selection results for Example 1.

n d METHOD δ TPN FPN C (%) MME (×10−2) TIME (s) ITER

100 25
ORACLE 0 20.00 0.00 100.0 0.06 0.03 –

1 20.00 0.00 100.0 0.11 0.03 –

PSIP 0 19.50 0.00 93.8 0.06 1.32 5.80
1 19.40 0.00 93.4 0.12 1.31 5.80

100 50
ORACLE 0 45.00 0.00 100.0 0.05 0.03 –

1 45.00 0.00 100.0 0.11 0.03 –

PSIP 0 42.04 0.01 74.2 0.07 3.88 7.91
1 41.92 0.00 73.8 0.13 3.79 7.49

200 25
ORACLE 0 20.00 0.00 100.0 0.02 0.05 –

1 20.00 0.00 100.0 0.05 0.05 –

PSIP 0 19.97 0.00 99.2 0.02 3.07 4.15
1 19.97 0.00 99.2 0.05 2.94 3.93

200 50
ORACLE 0 45.00 0.00 100.0 0.02 0.05 –

1 45.00 0.00 100.0 0.05 0.05 –

PSIP 0 44.82 0.00 96.8 0.02 9.35 5.28
1 44.82 0.00 96.8 0.05 8.76 5.02

200 100
ORACLE 0 95.00 0.00 100.0 0.02 0.05 –

1 95.00 0.00 100.0 0.05 0.05 –

PSIP 0 93.95 0.00 78.8 0.04 16.92 6.42
1 93.81 0.00 77.4 0.07 17.55 6.58

Table 2
Bias and MSE of coefficients of Example 1.

n d EST BIAS SD MSE
δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1

θ1 −0.006 −0.006 0.061 0.066 0.004 0.004
θ2 −0.011 −0.002 0.080 0.060 0.007 0.004

100 25 θ3 −0.006 −0.006 0.073 0.061 0.005 0.004
θ4 −0.003 0.009 0.071 0.074 0.005 0.006
θ5 −0.002 −0.007 0.058 0.075 0.003 0.006

θ1 −0.019 −0.023 0.124 0.132 0.016 0.018
θ2 −0.020 −0.019 0.125 0.131 0.016 0.018

100 50 θ3 −0.039 −0.029 0.140 0.125 0.021 0.016
θ4 −0.021 0.023 0.117 0.124 0.014 0.016
θ5 −0.016 −0.020 0.124 0.120 0.016 0.015

θ1 −0.001 0.000 0.023 0.027 0.001 0.001
θ2 −0.001 −0.001 0.024 0.016 0.001 0.000

200 25 θ3 −0.002 −0.003 0.030 0.037 0.001 0.001
θ4 0.000 0.000 0.013 0.016 0.000 0.000
θ5 0.000 0.000 0.026 0.026 0.001 0.001

θ1 −0.001 −0.002 0.039 0.038 0.002 0.001
θ2 −0.002 0.000 0.043 0.040 0.002 0.002

200 50 θ3 −0.002 −0.004 0.037 0.044 0.001 0.002
θ4 −0.001 0.002 0.029 0.028 0.001 0.001
θ5 −0.004 −0.001 0.043 0.039 0.003 0.001

θ1 −0.022 −0.018 0.144 0.117 0.021 0.014
θ2 −0.021 −0.021 0.136 0.128 0.019 0.017

200 100 θ3 −0.011 −0.019 0.134 0.134 0.018 0.018
θ4 −0.021 0.022 0.139 0.129 0.020 0.017
θ5 −0.021 −0.015 0.138 0.127 0.020 0.016

We consider SCAD penalty for all the three methods. We use the five-fold generalized cross validation to choose the
tuning parameter for PLS and PSIR, as suggested in both Peng and Huang (2011) and Zhu and Zhu (2009). The results are
summarized in Table 3, in which the columns labeled ‘‘TPN’’, ‘‘FPN’’, ‘‘C’’, ‘‘MME’’, ‘‘TIME’’ and ‘‘ITER’’ are similarly defined
in Table 1. In terms of the computing time, PSIR method is the fastest, followed by our PSIP method, and the slowest is the
PLS method. However, in terms of the accuracy of selection and estimation, the behavior of our PSIP method is the closest
to that of the ‘‘oracle’’. Table 4 lists the bias and the mse of various estimators for the five nonzero index parameters. From
the tables, one can see that regardless of sample size and the dimension of the parameter, the PSIP estimator are superior
to the PLS and PSIR estimators.

We now test the accuracy of the standard error formula in (6) for the PSIP estimators. Table 5 presents the results for
the first five coefficients. Similar to Fan and Peng (2004), the standard deviations of the estimated index parameters are
computed among 500 simulations. These can be regarded as the true standard errors (column labeled ‘‘SD’’) and compared
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Table 3
Selection results for Example 2.

n d METHOD TPN FPN C (%) MME (×10−2) TIME (s) ITER

100 25

ORACLE 20.00 0.00 100.0 0.94 0.01 –
PSIP 19.77 0.00 81.4 1.17 1.29 3.56
PLS 17.90 0.00 55.4 2.25 4.33 –
PSIR 15.90 0.00 53.8 2.77 1.05 –

100 50

ORACLE 45.00 0.00 100.0 1.43 0.01 –
PSIP 44.56 0.01 71.8 3.26 3.30 5.78
PLS 33.83 0.00 33.2 10.49 11.44 –
PSIR 35.90 0.00 35.0 8.38 3.20 –

200 25

ORACLE 20.00 0.00 100.0 0.43 0.02 –
PSIP 19.92 0.00 92.0 0.50 2.35 2.50
PLS 18.18 0.00 68.2 0.93 5.48 –
PSIR 17.24 0.00 64.6 1.29 1.16 –

200 50

ORACLE 45.00 0.00 100.0 0.69 0.02 –
PSIP 44.80 0.00 84.4 0.86 6.28 3.78
PLS 41.40 0.00 63.4 3.84 13.33 –
PSIR 37.50 0.01 62.2 5.27 3.13 –

200 100

ORACLE 95.00 0.00 100.0 1.24 0.03 –
PSIP 94.64 0.00 75.8 2.19 17.12 4.80
PLS 80.83 0.00 39.6 13.80 39.30 –
PSIR 83.51 0.00 41.6 11.77 14.23 –

Table 4
Bias and MSE of coefficients of Example 2.

n d EST BIAS MSE
PSIP PLS PSIR PSIP PLS PSIR

θ1 −0.002 −0.010 −0.010 0.003 0.006 0.008
θ2 −0.004 −0.007 −0.010 0.002 0.005 0.008

100 25 θ3 −0.005 −0.010 −0.009 0.002 0.006 0.008
θ4 −0.003 0.010 −0.017 0.002 0.004 0.010
θ5 −0.005 −0.010 −0.011 0.002 0.007 0.008

θ1 −0.019 −0.040 −0.039 0.015 0.028 0.030
θ2 −0.012 −0.036 −0.037 0.016 0.036 0.029

100 50 θ3 −0.019 −0.043 −0.036 0.016 0.028 0.030
θ4 −0.032 0.042 −0.044 0.019 0.032 0.030
θ5 −0.019 −0.038 −0.035 0.017 0.033 0.029

θ1 0.001 −0.005 −0.008 0.001 0.004 0.005
θ2 −0.002 −0.006 −0.008 0.001 0.004 0.006

200 25 θ3 −0.003 −0.004 −0.006 0.001 0.003 0.004
θ4 −0.002 0.006 −0.009 0.001 0.005 0.007
θ5 0.000 −0.005 −0.007 0.001 0.004 0.005

θ1 −0.001 −0.016 −0.012 0.001 0.008 0.008
θ2 −0.003 −0.016 −0.015 0.002 0.008 0.006

200 50 θ3 −0.004 −0.013 −0.019 0.002 0.007 0.008
θ4 −0.002 0.012 −0.010 0.002 0.006 0.004
θ5 −0.007 −0.015 −0.014 0.002 0.007 0.006

θ1 −0.019 −0.060 −0.048 0.013 0.044 0.032
θ2 −0.019 −0.026 −0.046 0.013 0.030 0.035

200 100 θ3 −0.019 −0.123 −0.044 0.013 0.062 0.035
θ4 −0.015 0.042 −0.044 0.012 0.033 0.035
θ5 −0.018 −0.045 −0.042 0.011 0.035 0.035

with the median of the 500 estimated standard errors calculated using (6) (column labeled ‘‘SDm’’). The column labeled
‘‘SDmad’’ is interquartile range of the 500 estimated standard errors divided by 1.349, which is a robust estimate of the
standard deviation. When n is small and d is large, the variances are a little underestimated, but the estimation becomes
betterwhenwe increase sample size. For example, when d = 25, the estimated standard error based on sample size n = 200
is very accurate.

5.3. Example 3

We use another simulation study to augment our theoretical results on time series. To make a fair comparison, we
use a similar model to Zhu and Zhu (2009) but in a time series setting. Specifically, we consider the following nonlinear
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Table 5
Standard deviations of the estimators for Example 2.

n(d) θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

SD SDm SD SDm SD SDm SD SDm SD SDm
(SDmad) (SDmad) (SDmad) (SDmad) (SDmad)

100 0.050 0.032 0.048 0.031 0.048 0.031 0.050 0.031 0.049 0.032
(25) (0.009) (0.009) (0.009) (0.008) (0.008)
100 0.119 0.036 0.126 0.036 0.126 0.036 0.134 0.036 0.127 0.036
(50) (0.018) (0.018) (0.018) (0.016) (0.016)
200 0.032 0.023 0.031 0.024 0.033 0.023 0.033 0.024 0.033 0.024
(25) (0.005) (0.005) (0.004) (0.004) (0.004)
200 0.039 0.027 0.043 0.027 0.042 0.027 0.044 0.026 0.042 0.026
(50) (0.006) (0.007) (0.006) (0.006) (0.006)
200 0.113 0.033 0.113 0.034 0.114 0.033 0.110 0.033 0.101 0.032
(100) (0.019) (0.021) (0.021) (0.020) (0.018)

Fig. 1. A simulated time series from NAR model (n = 800, d = 16).

autoregressive (NAR) model:

Xi = 2 sin

θ1Xi−1 + θ2Xi−2 + · · · + θdnXi−dn


+ σ0εi, i = 1, 2, . . . , n, (8)

where θ1 = 11/4, θ2 = −23/6, θ3 = 37/12, θ4 = 13/9 and θ5 = 4/3, so the standardized θ0 = (0.461,−0.642,
0.517,−0.242, 0.223, 0, . . . , 0)T . The εi’s are white noise with σ0 = 0.5. In time series modeling, we often have to explore
many models with various sets of lagged values to reduce possible modeling biases, so the number of predictors usually
depends on n. In our simulation, the dimension is calculated by dn = [4n1/4

] − 5 which is also used in both Fan and Peng
(2004) and Zhu and Zhu (2009).

We generate 500 Monte Carlo time series of length 100, 200, 400 and 800 from model (8). In each replication, the first
1000 observations are discarded to make the time series {Xi}

n
i=1 behave like a stationary time series. Fig. 1 is one typical plot

of a simulated time series of length 800 (dn = 16), which shows an evident stationary feature. Tables 6 and 7 present the
selection and estimation results of variousmethods: PSIP, PLS and PSIR. From the table, one sees that the comparison is even
more favorable to our PSIP method. The PSIP method performs significantly better than the PLS and PSIR regardless of the
dimension and sample size. Themodels selected by the PSIP is very close to the truemodel, and the differences between the
MMEs of the PSIP and ‘‘oracle’’ are small. Note that the PSIR proposed by Zhu and Zhu (2009) is not very suitable for time
series data, so it is not surprising that the PSIR does not perform well in this example.

We now investigate the performance of the variance estimators of the PSIP estimators. Similar to Example 2, we give the
SD, the SDm, and the SDmad of the PSIP estimators; see Table 8. These numerical results suggest that the proposed estimator
in (6) yields very reasonable standard error estimates.
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Table 6
Selection results for Example 3.

n d METHOD TPN FPN C (%) MME (×10−2) TIME (s) ITER

100 7

ORACLE 2.00 0.00 100.0 0.65 0.35 –
PSIP 1.84 0.10 75.4 0.82 0.79 2.54
PLS 1.28 0.85 31.6 9.08 2.95 –
PSIR 1.19 1.21 15.0 11.72 0.65 –

200 10

ORACLE 5.00 0.00 100.0 0.25 0.38 –
PSIP 4.89 0.05 91.2 0.27 0.97 2.07
PLS 3.67 0.04 26.8 15.92 10.13 –
PSIR 3.71 0.88 19.4 24.70 0.84 –

400 12

ORACLE 7.00 0.00 100.0 0.11 0.41 –
PSIP 6.95 0.00 94.6 0.12 3.61 1.88
PLS 6.49 0.46 46.8 5.46 13.46 –
PSIR 5.60 0.41 31.0 6.41 1.36 –

800 16

ORACLE 11.00 0.00 100.0 0.08 0.46 –
PSIP 10.98 0.00 98.2 0.09 15.06 1.57
PLS 10.81 0.12 73.6 1.12 43.11 –
PSIR 9.68 0.09 54.8 1.38 3.32 –

Table 7
Bias and MSE for the coefficients in Example 3.

n d EST BIAS MSE
PSIP PLS PSIR PSIP PLS PSIR

θ1 0.005 0.004 0.008 0.0035 0.009 0.010
θ2 −0.010 0.038 −0.078 0.0036 0.012 0.018

100 7 θ3 −0.027 −0.086 −0.159 0.0039 0.036 0.065
θ4 0.019 0.113 0.125 0.0097 0.044 0.045
θ5 −0.034 −0.058 −0.115 0.0086 0.030 0.044

θ1 0.003 0.068 0.020 0.0010 0.012 0.006
θ2 −0.003 −0.056 −0.051 0.0006 0.012 0.011

200 10 θ3 −0.008 −0.114 −0.121 0.0009 0.036 0.042
θ4 0.006 0.182 0.102 0.0027 0.041 0.038
θ5 −0.012 −0.115 −0.191 0.0025 0.038 0.044

θ1 0.001 0.005 0.019 0.0004 0.004 0.005
θ2 −0.001 −0.023 −0.032 0.0002 0.005 0.006

400 12 θ3 −0.002 −0.048 −0.067 0.0002 0.019 0.024
θ4 −0.001 0.067 0.066 0.0005 0.021 0.023
θ5 −0.004 −0.069 −0.067 0.0005 0.022 0.024

θ1 0.003 0.004 0.010 0.0002 0.002 0.005
θ2 0.004 −0.007 −0.010 0.0002 0.003 0.005

800 16 θ3 0.000 −0.014 −0.018 0.0002 0.003 0.006
θ4 −0.002 0.036 0.035 0.0003 0.011 0.012
θ5 0.000 −0.032 −0.033 0.0003 0.011 0.012

Table 8
Standard deviations of estimators for Example 3.

n(d) θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

SD SDm SD SDm SD SDm SD SDm SD SDm
(SDmad) (SDmad) (SDmad) (SDmad) (SDmad)

100 0.059 0.037 0.044 0.032 0.057 0.035 0.84 0.046 0.081 0.043
(7) (0.012) (0.013) (0.016) (0.024) (0.014)
200 0.031 0.025 0.024 0.020 0.030 0.021 0.052 0.035 0.048 0.025
(10) (0.005) (0.005) (0.006) (0.009) (0.005)
400 0.019 0.019 0.014 0.014 0.014 0.015 0.026 0.022 0.022 0.018
(13) (0.003) (0.002) (0.003) (0.005) (0.002)
800 0.015 0.013 0.012 0.011 0.012 0.011 0.017 0.017 0.018 0.015
(16) (0.001) (0.001) (0.001) (0.002) (0.001)

6. Application

In this section, we adopt the proposed PSIP method to the river flow data of Jökulsá Eystri of Iceland (Tong, 1990). The
dataset contains the daily river flow, temperature andprecipitation observations collected from January 1, 1972 toDecember
31, 1974. The response variable in this analysis is the daily river flow {Yt}

1096
t=1 , measured inmeter cubed per second of Jökulsá
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Table 9
Variable selection and estimation for the river flow dataset.

Yt−1 Yt−2 Yt−3 Yt−4 Yt−5 Yt−6 Yt−7

PSIP 0.885 −0.408 0.179 −0.085
BIC-SIP 0.877 −0.382 0.208 −0.125

Xt Xt−1 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6

PSIP 0.043
BIC-SIP 0.046 0.034 −0.004

Zt Zt−1 Zt−2 Zt−3 Zt−4 Zt−5 Zt−6
PSIP 0.096 −0.012
BIC-SIP 0.126 −0.079

Table 10
Mean squared prediction errors (MSPEs) for river flow dataset.

METHOD PSIP BIC-SIP FULL-SIP BIC-LM

MSPE 49.09 60.52 62.11 81.99

Fig. 2. Estimated function for the precipitation.

Eystri River. There are two exogenous variables: temperature {Xt}
1096
t=1 in degrees Celsius and daily precipitation {Zt}1096t=1 in

millimeters collected at the meteorological station at Hveravellir. See the time series plots in Wang and Yang (2009).
Wang and Yang (2009) used the SIP model to forecast the river flow series and discussed the advantages of SIP over

the linear regression model (LM). In our analysis, we are more interested in finding significant predictors that help to
forecast the river flow {Yt}. We pre-select all the lagged values in the past seven days (one week), i.e., the predictors are
Yt−1, . . . , Yt−7, Xt , Xt−1, . . . , Xt−7, Zt , Zt−1, . . . , Zt−7. Following Wang and Yang (2009), we remove the trend by a simple
quadratic spline regression andwork on the residual series. All three residual series pass the unit-root test, so we treat them
as stationary time series.We then apply the PSIPmethodwith the SCAD penalty to select significant predictors and estimate
the index parameters. We compare our PSIP method with the BIC method (BIC-SIP) proposed in Wang and Yang (2009).

Table 9 lists the variable selection and estimation results for both methods. The PSIP method selects the following seven
explanatory variables: Yt−1, Yt−2, Yt−3, Yt−4, Xt , Zt and Zt−1. The BIC-SIP selects nine variables, and seven variables are
common for both methods.

In order to evaluate the prediction performance of different methods, we use the observations of the first two years to
fit the model and compute the out sample forecast error for the last year:

MSPE =


1

365

1096
t=732

(Yt − Ŷt)
2

1/2

.

We show in Table 10, theMSPEs for PSIP, BIC-SIP, BIC based linear regressionmodel (‘‘BIC-LM’’) and the full SIPmodel (FULL-
SIP) with all the lagged values in the last seven days. In terms of theMSPEs from Table 10, our PSIP produces the best forecast
among all these methods. In addition, Fig. 2 shows the estimated nonparametric function.

7. Conclusion

In this paper,we consider themodel selection for high-dimensional single-index predictionmodels forweakly dependent
data. We apply the SCAD penalty and polynomial spline basis function expansion to perform variable selection and
estimation simultaneously. We provide new statistical theory in the framework of a slowly diverging number of index
parameters where the diverging rate is similar to the one for parametric models in Fan and Peng (2004). The proposed
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method has the following advantages and properties: (1) under regularity conditions, the proposed method is shown to
have the ‘‘oracle’’ property when the number of parameters tends to infinity as the sample size increases; (2) both the
variable selection and estimation are robust against deviations from the genuine single-index models; (3) the implemented
algorithm is fast and efficient by taking the advantage of global spline smoothing as well as the iterative method; (4) our
method is useful to select significant predictors not only for independent data but also for time series data.
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Appendix

A.1. Assumptions

We state our assumptions below.
(A1) The least squares criterion function R is locally convex at θ∗0 , i.e., for any ε > 0, there exists δ > 0 such that

R (θ∗)−R

θ∗0

< δ implies

θ∗ − θ∗0  < ε. The Hessian matrixH(θ∗0 ) in (3) is positive definite and its eigenvalues are
bounded below and above from∞.

(A2) For any θ1, θ2 ∈ Θc , the joint density function of (Xθ1 , Xθ2) is continuous and bounded below and above. For any θ ∈ Θc ,
the marginal density function of Xθ has continuous derivatives and is bounded below and above.

(A3) The regression functionmθ has r-th (r ≥ 5) order continuous derivatives for any θ ∈ Θc .
(A4) The noise ε satisfies E (ε |X )=0, E


ε2 |X


=1 and there exists a positive constantM such that supx E


|ε|3 |X=x


<M .

The standard deviation function σ(x) is bounded below and above.
(A5) There exist positive constants K0 and λ0 such that α (n) ≤ K0e−λ0n holds for all n, with the α-mixing coefficient for

Zi =

XT
i , εi

n
i=1 defined as

α (k) = sup
B∈σ {Zs,s≤t},C∈σ {Zs,s≥t+k}

|P (B ∩ C)− P (B) P (C)| , k ≥ 1.

(A6) The number of interior knots N satisfies:

n1/{2(r−1)}
≪ N ≪ min{n1/6 log−2/3(n)d−5/6n , n1/8 log−1/2(n)d−3/8n }.

(A7) There is a large enough open subset ωn of Θc which contains the true parameter point θ0, such that for all θ ∈ ωn and
j, k, l = 2, . . . , dn, the third order derivative satisfiesE  ∂3R(θ)

∂θj∂θk∂θl

 < C3 <∞. (A.1)

(A8) Let the values of θ0,1, θ0,2, . . . , θ0,sn be nonzero, θ0,sn+1, θ0,sn+2, . . . , θ0,dn be zero, and θ0,1, θ0,2, . . . , θ0,sn satisfy
min1≤j≤sn θ0,sn/λn →∞ as n→∞.

Remark A.1. Assumptions (A1)–(A3) are also assumed inWang and Yang (2009). For Assumptions (A2) and (A3), Wang and
Yang (2009) only require r = 4. In our paper, we consider diverging number of parameters, which requires the investigation
of the third order derivative of R(θ) in order to derive the ‘‘oracle’’ properties. Therefore, we need to require higher order
smoothness of the underlying regression function. Assumption (A4) is typical in the nonparametric smoothing literature,
see for instance, Härdle (1990) and Xia et al. (2002). Assumption (A5) is suitable to model time series data. Pham (1986)
shows that a geometrically ergodic time series is a strongly mixing sequence. Assumption (A6) gives the requirement for
the number of interior knots, which depends not only on the smoothness of the underlying regression function but also
on the growing rate of the dimension of covariates. If dn is finite, then we have n1/{2(r−1)}

≪ N ≪ n1/8 log−1/2(n). This is
slightly different from the assumption in Wang and Yang (2009) because we consider higher order spline approximation
(r > 5) rather than cubic spline approximation (r = 4). Assumptions (A7) and (A8) are similar to Conditions (G) and (H)
in Fan and Peng (2004).

(P1) lim infn→+∞ lim infθ→0+ p′λn(θ)/λn > 0.
(P2) an = max2≤j≤dn{p

′

λn
(|θ0j|), θ0j ≠ 0} = O{d1/2n n−1/2N3/2 log(n)}.

(P3) un = max2≤j≤dn{p
′′

λn
(|θ0j|), θ0j ≠ 0} → 0 as n→+∞.

(P4) There exists constants C1 and C2 such that, when θ1, θ2 > C1λn, |p′′λn(θ1)− p′′λn(θ2)| ≤ C2|θ1 − θ2|.

Remark A.2. Conditions (P1), (P3) and (P4) are also assumed in Fan and Peng (2004). Assumption (P2) ensures the
unbiasedness property for large parameters and the existence of a consistent penalized estimator.
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A.2. Preliminary results

Before we prove all the theorems, we first state several lemmas.

Lemma A.1 (See page 149 of deBoor, 2001). There is a positive constant Cr such that for every m ∈ C (r) [0, 1], there exists a
function g ∈ Γ (r−2) [0, 1] that satisfies ∥g −m∥∞ ≤ Cr

m(r)

∞

N−r .

According to Theorem 7.7.4 in DeVore and Lorentz (1993), the following lemma holds.

Lemma A.2. There exists a constant C > 0, such that for 0 ≤ k ≤ 2 and m ∈ C (r) [0, 1]m− QT ,r (m)
(k)

∞

≤ C
m(r)


∞

N−(r−k),

where QT ,r (m) is the rth order quasi-interpolant of m corresponding to a sequence of knots T ; see the definition of QT ,r on Page
146 of DeVore and Lorentz (1993).

The following lemma gives the uniform convergence rate of the rth order polynomial spline estimator m̂θ in (4) tomθ in
(2) as well as its derivative approximation rate.

Lemma A.3. Under Assumptions (A2)–(A5), we have that

sup
θ∈Θc ,x∈[0,1]

 dkdxk

m̂θ −mθ


(x)
 = Oa.s.


n−1/2N1/2+k log(n)+ N−(r−k)


, (A.2)

for any k = 0, . . . , r − 2.

Proof of LemmaA.3 is the same as the proof of Proposition A.1 inWang and Yang (2009)with replacing the approximation
rate of cubic spline smoothing by the more general polynomial spline approximation results given in Lemmas A.1 and A.2,
thus omitted.

Lemma A.4. Under Assumptions (A1)–(A5), we have

sup
θ∈Θc

sup
1≤j≤dn−1

 ∂∂θ∗j {R̂(θ∗)− R(θ∗)}

 = Oa.s.

n−1/2N3/2 log(n)+ N−(r−1)


,

sup
θ∈Θc

sup
1≤j,k≤dn−1

 ∂2

∂θ∗j ∂θ
∗

k
{R̂(θ∗)− R(θ∗)}

 = Oa.s.

n−1/2N5/2 log(n)+ N−(r−2)


,

sup
θ∈Θc

sup
1≤j,k,l≤dn−1

 ∂3

∂θ∗j ∂θ
∗

k ∂θ
∗

l
{R̂(θ∗)− R(θ∗)}

 = Oa.s.

n−1/2N7/2 log(n)+ N−(r−3)


.

Proof of Lemma A.4 is the same as the proof of Lemma A.15 inWang and Yang (2009) with replacing the approximation rate
of cubic spline smoothing by the more general polynomial spline approximation results, thus omitted.

A.3. Proof of Theorem 1

Proof of Theorem 1. Let αn = d1/2n n−1/2N3/2 log(n) and set ∥u∥ = C , where C is a large enough constant. To show the
existence of such penalized local minimizer, it is equivalent to prove that for any given ε there is a large constant C such
that, for large nwe have

P


inf
∥u∥=C

Q̂ (θ∗0 + αnu) > Q̂ (θ∗0 )

≥ 1− ε.

This implies that with probability tending to 1 there is a local minimizer θ̂∗ in the ball {θ∗0 + αnu : ∥u∥ ≤ C} such that
∥θ̂∗ − θ∗0 ∥ = OP(αn).

Using pλn(0) = 0, we have

D(u) = Q̂ (θ∗0 + αnu)− Q̂ (θ∗0 )

≥


R̂(θ∗0 + αnu)− R̂(θ∗0 )


+

sn−1
j=1


pλn

θ∗0,j + αnuj
− pλn

θ∗0,j
= D1 (u)+ D2 (u) ,
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where sn is the number of parameters which the true values are not 0. Then, by Taylor’s expansion, we obtain

D1 (u) = R̂(θ∗0 + αnu)− R̂(θ∗0 )

= αn


∂

∂θ∗
R̂(θ∗0 )


u+

1
2
α2
nu

T


∂2

∂θ∗∂θ∗T
R̂(θ∗0 )


u+

1
6
α3
n
∂

∂θ∗


uT


∂2

∂θ∗∂θ∗T
R̂(θ̄)


u

u

= αnŜ(θ∗0 )u+
1
2
α2
nu

T Ĥ(θ∗0 )u+
1
6
α3
n
∂

∂θ∗


uT


∂2

∂θ∗∂θ∗T
R̂(θ̄)


u

u

= D11 (u)+ D12 (u)+ D13 (u) ,

where the vector θ lies between θ∗0 and θ∗0 + αnu, and

D2 (u) =
sn−1
j=1


pλn(θ

∗

0,j + αnuj|)− pλn(|θ
∗

0,j|)


=

sn−1
j=1


αnp′λn(θ

∗

0,j)sgn(θ
∗

0,j)uj + α
2
np
′′

λn
(θ∗0,j)u

2
j {1+ o(1)}


= D21 (u)+ D22 (u) .

Note that ∂
∂θ∗

R (θ∗) = 0, by Assumptions (A2)–(A6) and Lemma A.4 we have

|D11| ≤ αn

 ∂

∂θ∗


R̂

θ∗

− R


θ∗
 ∥u∥

= αn ∥u∥ × OP

d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1


= OP


α2
n


∥u∥ . (A.3)

Next, we consider D12,

D12 =
1
2
uT


∂2

∂θ∗∂θ∗T
R̂(θ∗0 )−

∂2

∂θ∗∂θ∗T
R(θ∗0 )


uα2

n +
1
2
uT


∂2

∂θ∗∂θ∗T
R(θ∗0 )


uα2

n

=
1
2
uT

Ĥ(θ∗0 )− H(θ∗0 )


uα2

n +
1
2
uTH(θ∗0 )uα

2
n .

According to Lemma A.4 and Assumption (A6), we have

|D12| ≤
1
2
uTH(θ∗0 )uα

2
n + O


n−1/2N5/2 log(n)+ N−r+2


dn

α2
n∥u∥

2

=
1
2
uTH(θ∗0 )uα

2
n + oP (1)× α2

n∥u∥
2. (A.4)

By the Cauchy–Schwarz inequality, we have

D13 =
1
6
α3
n
∂

∂θ∗


uT


∂2

∂θ∗∂θ∗T
R̂(θ∗)


u

u

≤
1
6
α3
n
∂

∂θ∗


uT ∂2

∂θ∗∂θ∗T


R̂(θ∗)− R(θ∗)


u

u+

1
6
α3
n
∂

∂θ∗


uT


∂2

∂θ∗∂θ∗T
R(θ∗)


u

u.

Using the result in Lemma A.4 again, together with Assumption (A6), implies that

|D13| ≤ OP

d3/2n αn


α2
n∥u∥

3
+ OP


n−1/2N7/2 log(n)+ N−r+3


d3/2n αn


α2
n∥u∥

3

= oP (1)× α2
n∥u∥

2. (A.5)

Furthermore, by Assumptions (P2)–(P4), the terms D21 and D22 satisfy the following

|D21| =

sn−1
j=1

αnp′λn

|θ∗0,j|


sgn


θ∗0,j

uj
 ≤ √snαnan∥u∥ ≤ α2

n∥u∥, (A.6)

and

|D22| =

sn−1
j=1

α2
np
′′

λn

θ∗0,j u2
j {1+ o(1)} ≤ 2 max

1≤j≤sn−1
p′′λn

θ∗0,jα2
n∥u∥

2. (A.7)
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By Eqs. (A.3)–(A.7), when ∥u∥ is large enough, all terms D11, D13, D21 and D22 are dominated by a positive term D12. Hence,
Theorem 1 holds. �

A.4. Proof of sparsity

To prove Theorem 2, we first show the sparsity property using Lemma A.5.

Lemma A.5. Suppose Assumptions (A1)–(A8) and (P1) are satisfied. If dn ∼ nδ(0 < δ < 1/5(1 − 3/(r − 1))), λn → 0 and
λnd
−1/2
n n1/2

N−3/2 log−1(n) → ∞ as n → ∞, then with probability tending to 1, for any given θ∗1 satisfying
θ∗1 − θ∗01 = OP{d

1/2
n n−1/2

N3/2 log(n)} and any constant C, we have

Q̂

θ∗T1 , 0

T T
= min
∥θ∗1−θ

∗
01∥≤Cd

1/2
n n−1/2N3/2 log(n)

Q̂

θ∗T1 , θ

T
2

T
.

Proof. Let εn = Cd1/2n n−1/2N3/2 log(n), then to prove Lemma A.5, it is sufficient to show that with probability tending to 1,
as n→∞, for any θ∗1 satisfying ∥θ∗1 − θ

∗

01∥ = OP{d
1/2
n n−1/2N3/2 log(n)}, we have, for any j = sn, . . . , dn − 1

∂Q̂ (θ∗)
∂θ∗j

< 0, for − εn < θ∗j < 0; (A.8)

∂Q̂ (θ∗)
∂θ∗j

> 0, for 0 < θ∗j < εn. (A.9)

Using Taylor expansion, we have for any j = sn, . . . , dn

K =
∂Q̂ (θ∗)
∂θ∗j

=
∂ R̂(θ∗)
∂θ∗j

+ p′λn(|θ
∗

j |)sgn(θ
∗

j )

=
∂ R̂(θ∗0 )
∂θ∗j

+

dn−1
k=1

∂2R̂(θ∗0 )
∂θ∗j ∂θ

∗

k


θ∗k − θ

∗

0,k


+

dn−1
k,l=1

∂3R̂(θ̄)
∂θ∗j ∂θ

∗

k ∂θ
∗

l


θ∗k − θ

∗

0,k

 
θ∗l − θ

∗

0,l


+ p′λn(|θ

∗

j |)sgn(θ
∗

j )

= K1 + K2 + K3 + K4,

where θ
∗
lies between θ∗ and θ∗0 . Next, we consider the terms K1, K2 and K3. Based on the proof of Theorem 1, we have

|K1| =

 ∂∂θ∗j

(R̂− R)(θ∗0 )

+
∂R(θ∗0 )∂θ∗j

 = OP

n−1/2N3/2 log(n)+ N−r+1


= oP


d1/2n


n−1/2N3/2 log(n)+ N−r+1


. (A.10)

The term K2 can be written as

K2 =

dn−1
k=1

∂2R̂(θ∗0 )
∂θ∗j ∂θ

∗

k


θ∗k − θ

∗

0,k


=

dn−1
k=1

∂2

R̂(θ∗0 )− R(θ∗0 )


∂θ∗j ∂θ

∗

k


θ∗k − θ

∗

0,k


+

dn−1
k=1

∂2R(θ∗0 )
∂θ∗j ∂θ

∗

k


θ∗k − θ

∗

0,k


= K21 + K22.

Based on the proof of Theorem 1, using the Cauchy–Schwarz inequality and
θ∗ − θ∗0  = OP{d

1/2
n n−1/2N3/2 log(n)}, we have

|K21| ≤
θ∗k − θ∗0,k


dn−1
k=1

∂2

R̂(θ∗0 )− R(θ∗0 )


∂θ∗j ∂θ

∗

k


= OP


dn

n−1/2N5/2 log(n)+ N−r+2


× OP


n−1/2N3/2 log(n)+ N−r+1


= OP


dnn−1N4 log2(n)


= oP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1


. (A.11)
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On the other hand, we have

|K22| =

dn−1
k=1

∂2R(θ∗0 )
∂θ∗j ∂θ

∗

k
(θ∗k − θ

∗

0,k)


≤ OP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1


×

dn−1
k=1

H∗j,k(θ
∗

0 )


= OP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1


. (A.12)

Next, we consider K3, and we can write it as follows:

K3 =

dn−1
k,l=1


∂3R̂(θ∗)
∂θ∗j ∂θ

∗

k ∂θ
∗

l
−

∂3R̂(θ∗)
∂θ∗j ∂θ

∗

k ∂θ
∗

l

 
θ∗k − θ

∗

0,k

 
θ∗l − θ

∗

0,l


+

dn−1
k=1

∂3R̂(θ∗0 )
∂θ∗j ∂θ

∗

l ∂θ
∗

k


θ∗k − θ

∗

0,k

 
θ∗l − θ

∗

0,l


= K31 + K32.

However, by the Cauchy–Schwarz inequality, we have

|K31| ≤

dn−1
k,l=1


∂3R̂(θ∗)
∂θ∗j ∂θ

∗

k ∂θ
∗

l
−

∂3R(θ∗)
∂θ∗j ∂θ

∗

k ∂θ
∗

l

 θ∗ − θ∗0 2
= OP


dn

n−1/2N7/2 log(n)+ N−r+3


× OP


d1/2n n−1/2N3/2 log(n)

2
= OP


d2nn
−3/2N13/2 log3(n)


= oP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1


. (A.13)

By Assumption (A6),

|K32| ≤ OP (dn) ∥θ∗n − θ
∗

0 ∥
2
= OP (dn)× OP


dnn−1N3 log2(n)


= oP


d1/2n n−1/2N3/2 log(n)


. (A.14)

From Eqs. (A.10) to (A.14), we have

K1 + K2 + K3 = OP

d1/2n n−1/2N3/2 log(n)


.

According to Assumptions (A8), (P1) and {d1/2n n−1/2N3/2 log(n)}λ−1n → 0, we have

∂ R̂(θ∗n )
∂θ∗j

= λn

p′λn(|θ∗j |)
λn

sgn(θ∗j )+ OP


d1/2n n−1/2N3/2 log(n)

λ−1n


.

Hence, it is easy to see that the sign of θ∗j completely determines the sign of ∂ R̂(θ
∗)

∂θ∗j
and Lemma A.5 holds. �

A.5. Proof of Theorem 2

As shown in Theorem 1, there is a αn-consistent local minimizer θ̂∗ of Q̂ (θ∗). By Lemma A.5, part (i) of Theorem 2 holds,

thus, θ̂∗ has the form

(1− ∥θ̂∗1 ∥

2)1/2, θ̂∗T1 , 0
T
T

. To prove part (ii) in Theorem 2, it is equivalent to show that

(H+ 6λn)(θ̂
∗

1 − θ
∗

01)+ bn = Ŝ(θ∗01)+ oP

n−1/2


.

With a slight abuse of notation, let Q̂

θ∗1

= Q̂


((1− ∥θ∗1 ∥

2)1/2)T , θ∗T1 , 0
T

. As θ̂∗1 must satisfy the penalized equation

∂
∂θ∗1

Q̂ (θ̂∗1 ) = 0, using the Taylor expansion on ∂
∂θ∗1

Q̂ (θ̂∗1 ) at point θ
∗

01 component-wisely, we have
∂2

∂θ∗1 ∂θ
∗T
1

R̂

θ∗01

+ p′′λn(θ̄1)


(θ̂∗1 − θ

∗

01)+ p′λn

θ∗01


= −
∂

∂θ∗1
R̂(θ∗01)−

1
2


(θ̂∗1 − θ

∗

01)
T ∂2

∂θ∗1 ∂θ
∗T
1


∂

∂θ∗j
R̂( ¯̄θ
∗

1)


(θ̂∗1 − θ

∗

01)

sn−1

j=1

,
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where θ̄1 and ¯̄θ1 lie between θ̂∗1 and θ∗01. Now, we define

U =
∂2

∂θ∗1 ∂θ
∗T
1


R̂

θ∗01

− R


θ∗01

(θ̂∗1 − θ

∗

01),

T =
1
2


(θ̂∗1 − θ

∗

01)
T ∂2

∂θ∗1 ∂θ
∗T
1


∂

∂θj
R̂( ¯̄θ
∗

1)


(θ̂∗1 − θ

∗

01)

sn−1
j=1

.

Similar to the proof of Theorem 1 and by the Cauchy–Schwarz inequality, we have

∥T∥ ≤ OP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1

2
× OP


d3/2n n−1/2N7/2 log(n)+ d3/2n N−r+3


+OP


d1/2n n−1/2N3/2 log(n)+ d1/2n N−r+1

2
× OP


d3/2n


= OP


d5/2n n−3/2N13/2 log3(n)


+ OP


d5/2n n−1N3 log2(n)


= oP(n−1/2). (A.15)

We also have that

|U| = OP

d3/2n n−1N4 log2(n)


= oP(n−1/2). (A.16)

Finally, from (A.15) and (A.16), we have

(Ĥ+ 6λn)(θ̂
∗

1 − θ
∗

01)+ bn = Ŝ(θ∗01)+ oP

n−1/2


.

Let 9 =

ψjk
sn
j,k=2 be the asymptotic covariance matrix of

√
nŜ(θ∗01). Following Wang and Yang (2009), we have

ψjk =

∞
i=−∞

E{(ṁj − θ0,jθ
−1
0,1 ṁ1)(Xθ0,1)(ṁk − θ0,kθ

−1
0,1 ṁ1)(Xθ0,i+1)ξ1ξi+1},

in which ξi = mθ0(Xθ0,i)− Yi, i ≥ 1, and ṁj is the value of ∂
∂θj

mθ taking at θ∗ = θ∗0 , for any j, k = 2, . . . , sn.

Let� = (H+6λn)
−19(H+6λn)

−1 and An be a q× (sn−1)matrix such that AnAT
n converges to a nonnegative symmetric

q× q matrix 6A. We now prove the asymptotic normality of An�
−1/2(H+ 6λn)

−1√nŜ(θ∗01). To achieve such aim, we have
to show that for any vector a = (a1, a2, . . . , aq)T ∈ Rq,

aT {An�
−1/2(H+ 6λn)

−1√nŜ(θ∗01)} → N(0, aT6Aa) (A.17)

in distribution.
By the first order derivative approximation result in Lemma A.4 and Assumption (A6), we have for any j,

Ŝj(θ∗01) =
1
n

n
i=1

(ṁj − θ0,jθ
−1
0,1 ṁ1)(Xθ0,i)ξi + op{N−(r−1) + n−1N2 log2(n)+ (nN)−1/2 log(n)}.

According to Assumptions (A2) and (A3),

Ŝj(θ∗01) =
1
n

n
i=1

(ṁj − θ0,jθ
−1
0,1 ṁ1)(Xθ0,i)ξi + op(n−1/2).

For simplicity, we letWi = {(ṁj − θ0,jθ
−1
0,1 ṁ1)(Xθ0,i)}

sn
j=2 and write

aT {An�
−1/2(H+ 6λn)

−1√nŜ(θ∗01)} =
1
√
n

n
i=1

aTAn�
−1/2(H+ 6λn)

−1Wiξi + op(1)

=
1
√
n

n
i=1

Ziξi + op(1),

where Zi = aTAn�
−1/2(H+ 6λn)

−1Wi. Note that E(Ziξi) = 0, and

Var


1
√
n

n
i=1

Ziξi


= aTAn�

−1/2(H+ 6λn)
−1Var


1
√
n

n
i=1

Wiξi


(H+ 6λn)

−1�−1/2AT
na

= aTAn�
−1/2(H+ 6λn)

−19(H+ 6λn)
−1�−1/2AT

na

→ aT6Aa.
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Applying Theorem 2.21 in Fan and Yao (2003), we have

1
√
n

n
i=1

Wiξi → N(0, aT6Aa)

in distribution. Slutsky’s theorem entails that
√
nAn�

−1/2

(θ̂∗1 − θ

∗

01)+

H+ 6λn

−1 bn→ N (0,6A) .

This completes the proof.
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