

MATH 451/551

Chapter 6. Joint Distribution

6.3 Expected Values

GuanNan Wang
gwang01@wm.edu

Example 1

Example 1

For the random variables X and Y with joint probability density function $f(x, y) = 2$, $x > 0$, $y > 0$, $x + y < 1$, find $V(E(Y|X))$.

Theorem

Theorem 6.11

If X and Y are random variables, then

$$E(X) = E\{E(X|Y)\}$$

when the expectations exist.

Theorem

Theorem 6.12

If X and Y are random variables, then

$$V(X) = E\{V(X|Y)\} + V\{E(X|Y)\}$$

when the expectations exist.

Example 2

Example 2

The binomial distribution was introduced as the number of successes in n independent Bernoulli trials, each with a probability of success p . The population mean and variance of $X \sim \text{Bin}(n, p)$ are

$$E(X) = np \quad \text{and} \quad V(X) = np(1 - p).$$

But what if an application arises where n is fixed but p is unknown? Such an application might arise in an area of quality control known as **acceptance sampling**, where a fixed number of items are sampled from a large lot. To be more specific, assume that p is no longer a fixed probability, but is itself a random variable. Furthermore, assume that you have so little information about the probability of success on each Bernoulli trial that you can only state that the probability of success P is a random variable that is equally likely to fall between 0 and 1. That is to say, $P \sim U(0, 1)$. The problem here is to find $E(X)$ and $V(X)$ when $X \sim \text{Bin}(n, P)$, where $P \sim U(0, 1)$.

Thank You

THANK YOU!

