

MATH 451/551

Chapter 6. Joint Distribution

6.3 Covariance

GuanNan Wang
gwang01@wm.edu

Covariance

Covariance

Let X and Y be random variables with finite population means μ_X and μ_Y , respectively. The population covariance between X and Y is

$$\text{Cov}(X, Y) = E\{(X - \mu_X)(Y - \mu_Y)\}.$$

- ▶ Symmetric in its arguments: $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
- ▶ Defining formula useful for conceptualizing covariance
 - ▶ If X and Y tend to be on opposite sides of their means together \Rightarrow population covariance negative
 - ▶ If X and Y tend to be on the same sides of their means together \Rightarrow population covariance positive

Example 1

Example 1

A fair coin is tossed twice. Let X be the number of heads that appear and Y be the number of tails that appear. Find the population covariance between X and Y .

Special Case

Special Case

Variance is a special case of covariance: $V(X) = Cov(X, X)$.

► **Bivariate Case:**

$$\Sigma = \begin{pmatrix} V(X) & Cov(X, Y) \\ Cov(Y, X) & V(Y) \end{pmatrix}$$

► **Trivariate Case:**

$$\Sigma = \begin{pmatrix} V(X) & Cov(X, Y) & Cov(X, Z) \\ Cov(Y, X) & V(Y) & Cov(Y, Z) \\ Cov(Z, X) & Cov(Z, Y) & V(Z) \end{pmatrix}$$

Theorem 6.4

Theorem 6.4

If X and Y are random variables with finite population means μ_X and μ_Y , respectively, then

$$\text{Cov}(X, Y) = E\{(X - \mu_X)(Y - \mu_Y)\} = E(XY) - \mu_X\mu_Y.$$

Example 2

Example 2

A fair coin is tossed twice. Let X be the number of heads that appear and Y be the number of tails that appear. Find the population covariance between X and Y using the shortcut formula

Example 3

Example 3

Deal two cards from a well-shuffled deck. Let X be the number of aces dealt and Y be the number of face cards dealt. Using the shortcut formula, find the population covariance between X and Y .

Thank You

THANK YOU!

