

MATH 451/551

Chapter 6. Joint Distribution 6.2 Independent Random Variables

GuanNan Wang
gwang01@wm.edu

Theorem

Theorem 6.1

Let the random variables X and Y have joint distribution described by $f(x, y)$ defined on a product space. Then X and Y are independent iff $f(x, y)$ can be written as the product of a function of x only and a function of y only.

Example 2 (Cont.)

Example 2

Let X_1 and X_2 be random variables with joint pdf

$$f(x_1, x_2) = x_1 x_2, \quad 0 < x_1 < 1, \quad 0 < x_2 < 2$$

Are X_1 and X_2 independent?

Example 3

Example 3

Are the random variables X and Y with joint probability density function

$$f(x, y) = \frac{1}{50}, \quad x > 0, y > 0, x + y < 10$$

independent?

Example 4

Example 4

Are the random variables X and Y with joint probability density function

$$f(x, y) = xy - 2x - y + 2, \quad 0 < x < 1, \quad 0 < y < 2$$

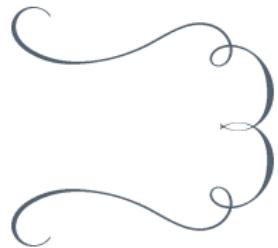
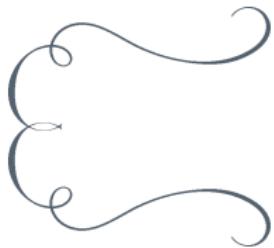
independent?

Example 5

Example 5

Are the random variables X and Y with joint probability density function $f(x, y) = x + y, \quad 0 < x < 1, \quad 0 < y < 1$ independent?

Example 6



Example 6

Let $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ be independent random variables. Find the probability that $X_1 < X_2$

Thank You

THANK YOU!

