

MATH 451/551

Chapter 6. Joint Distribution 6.2 Independent Random Variables

GuanNan Wang
gwang01@wm.edu

Independent Random Variables

Independent Random Variables

Let the random variables X and Y (discrete or continuous) have a joint distribution described by $f(x, y)$ and marginal distributions described by $f_X(x)$ and $f_Y(y)$. The random variables X and Y are independent iff $f(x, y) = f_X(x)f_Y(y)$ for all real numbers x and y .

- ▶ Intuitively, if the value of X does not affect the distribution of Y and if the value of Y does not affect the distribution of X , then X and Y are **independent**.
- ▶ Random variables that are not independent are **dependent**.
- ▶ An equivalent definition can also be written in terms of cumulative distribution: the random variables X and Y are independent iff $F(x, y) = F_X(x)F_Y(y)$ for all real numbers x and y .
- ▶ For X and Y to be independent, the support of their joint distribution must be a **product space**, i.e., if X has support \mathcal{A} and Y has support \mathcal{B} , then the product space is $\{(\mathbf{x}, \mathbf{y}) | \mathbf{x} \in \mathcal{A} \text{ and } \mathbf{y} \in \mathcal{B}\}$

Example 1

Example 1

Are the random variables X and Y with joint pmf given below independent?

	1	2	3	$f_X(x)$
1	0.2	0.1	0.3	0.6
2	0.1	0.1	0.2	0.4
$f_Y(y)$	0.3	0.2	0.5	

Example 2

Example 2

Let X_1 and X_2 be random variables with joint pdf

$$f(x_1, x_2) = x_1 x_2, \quad 0 < x_1 < 1, \quad 0 < x_2 < 2$$

Are X_1 and X_2 independent?

Thank You

THANK YOU!

