

MATH 451/551

Chapter 6. Joint Distribution

6.1 Bivariate Distribution

GuanNan Wang
gwang01@wm.edu

Conditional Distribution

Conditional Distribution

Let the (discrete or continuous) random variables X and Y have a joint distribution described by $f(x, y)$ and marginal distributions described by $f_X(x)$ and $f_Y(y)$. The conditional distribution of X given $Y = y$ is

$$f_{X|Y}(x|Y = y) = \frac{f(x, y)}{f_Y(y)}$$

for $f_Y(y) > 0$, defined over the appropriate support. Likewise, the conditional distribution of Y given $X = x$ is

$$f_{Y|X}(y|X = x) = \frac{f(x, y)}{f_X(x)}$$

for $f_X(x) > 0$, defined over the appropriate support.

- ▶ These conditional probability mass functions and probability density functions satisfy the standard existence conditions.

Example 1

Example 1

Given following joint distribution

$$f(x, y) = \begin{cases} 0.2 & x = 1, y = 1 \\ 0.1 & x = 1, y = 2 \\ 0.3 & x = 1, y = 3 \\ 0.1 & x = 2, y = 1 \\ 0.1 & x = 2, y = 2 \\ 0.2 & x = 2, y = 3 \end{cases},$$

find the probability mass functions associated with the following conditional random variables:

$$f_{X|Y}(x|Y=1) \quad \text{and} \quad f_{Y|X}(y|X=2)$$

Example 2

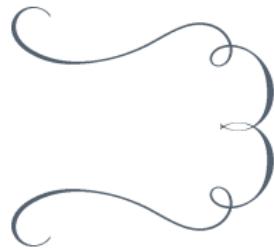
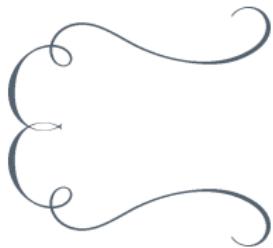
Example 2

Deal two cards from a well-shuffled deck. Let the random variable X be the number of aces dealt and let the random variable Y be the number of face cards dealt. Find the conditional distribution of the number of aces in the hand given that there is one face card in the hand.

Example 3

Example 3

Let X and Y have joint pdf



$$f(x, y) = \frac{1}{50}, \quad x > 0, y > 0, x + y < 10$$

1. Find $f_{X|Y}(x|Y = y)$.
2. Find $P(3 < X < 5|Y = 2)$.

Thank You

THANK YOU!

