

MATH 451/551

Chapter 5. Common Continuous Distribution

5.2 Exponential Distribution

GuanNan Wang
gwang01@wm.edu

Exponential Distribution

Exponential Distribution

- ▶ A continuous random variable with positive support $\mathcal{A} = \{x > 0\}$ is useful in a variety of applications. Examples include
 - ▶ patient survival time after the diagnosis of a particular cancer
 - ▶ the lifetime of a light bulb
 - ▶ the waiting and service time for a customer at a coffee shop
 - ▶ the time between births at a hospital
 - ▶ the number of gallons purchased at a gas pump
 - ▶ the time to construct an office building
- ▶ A continuous random variable X with pdf

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

for some real constant $\lambda > 0$ is an $\text{Exponential}(\lambda)$ random variable.

Memoryless Property

Memoryless Property

For $X \sim \text{Exp}(\lambda)$ and any two positive real numbers x and y

$$P(X \geq x + y | X \geq x) = P(X \geq y).$$

Theorem

Theorem

If $X \sim \text{Exp}(\lambda)$, then

$$E(X^s) = \frac{\Gamma(s+1)}{\lambda^s}, \quad s > -1$$

where $\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$.

Notes on Gamma function

- ▶ When k is an integer, $\Gamma(k) = (k - 1)!$
- ▶ The gamma function is minimized at $k \cong 1.4616$
- ▶ $\Gamma(k + 1) = k\Gamma(k)$ fpr $k > 0$
- ▶ $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- ▶ The gamma function is calculated in R with *gamma*
- ▶ The gamma function is calculated in Maple with *GAMMA*
- ▶ $E(X^s) = \frac{s!}{\lambda^s}$

Mean

Variance

Skewness

Kurtosis

R Functions

Function	Returned Value
<code>dexp(x, λ)</code>	calculates the probability density function $f(x)$
<code>pexp(x, λ)</code>	calculates the cumulative distribution function $F(x)$
<code>qexp(u, λ)</code>	calculates the percentile (quantile) $F^{-1}(u)$
<code>rexp(m, λ)</code>	generates m random variates

Example 1

12

Example 1

Let $X \sim \text{Exp}(\lambda)$, what is the distribution of $Y = \lfloor X \rfloor$?

Summary

The exponential distribution

- ▶ is the fundamental distribution with positive support
- ▶ has a single positive parameter λ
- ▶ is the only continuous distribution with the memoryless property
- ▶ has pdf

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- ▶ has moments

$$\mu = \frac{1}{\lambda} \quad \text{and} \quad \sigma^2 = \frac{1}{\lambda^2}$$

- ▶ has a second parameterization: $\theta = \frac{1}{\lambda}$

$$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad x > 0$$

and the population mean and variance are

$$\mu = \theta \quad \text{and} \quad \sigma^2 = \theta^2$$

Thank You

THANK YOU!

