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Negative Binomial Distribution

Negative Binomial Distribution
I The negative binomial distribution models the number of failures

before the r th success in repeated, independent Bernoulli trials,
each with probability of success p.

I Support: A = {0,1,2, . . .}
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PMF

The probability of r successes and x failures in a specified order, for
example

FFSFFFSS

associated with r = 3 and x = 5, is
pr (1− p)x .

There are
(

x + r − 1
r − 1

)
different sequences of failures and

successes associated with x failures prior to the r th success.

Negative Binomial Distribution
I PMF: A discrete random variable X with PMF

f (x) =
(

x + r − 1
r − 1

)
pr (1− p)x , x = 0,1,2, . . .

for some positive integer r and 0 < p < 1 is a
Negative Binomial(r ,p) random variable.
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Mean
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Variance
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MGF

GuanNan Wang | MATH451/551



6

Skewness
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Kurtosis
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Example 1

Example 1
Eric is making cold sales calls. The probability of a sale on each call
is 0.4. The calls may be considered independent Bernoulli trials.

1. What is the probability that he has exactly five failed calls before
his second successful sales call?

2. What is the probability that he has fewer than five failed calls
before his second successful sales call?
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R Functions

R Functions
Function Returned Value

dnbinom(x, r, p) calculates the probability mass function f (x)
pnbinom(x, r, p) calculates the cumulative mass function F (x)
qnbinom(u, r, p) calculates the percentile (quantile) F−1(u)
rnbinom(m, r, p) generates m random variates
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Alternative Definition

Alternative Definition
A negative binomial random variable X can also model the trial
number of the r th success in a sequence of repeated, mutually
independent, and identically distributed Bernoulli trials.

I Support: A = {r , r + 1, r + 2, . . .}
I PMF: A discrete random variable X with PMF

f (x) =
(

x − 1
r − 1

)
pr (1− p)x−r , x = r , r + 1, . . .

for some positive integer r and 0 < p < 1 is a
Negative Binomial(r ,p) random variable.

I Population Mean: µ = E(X ) = r
p .

I The population variance, skewness, and kurtosis remain the
same.
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Remark

I Alias: Pascal distribution
I Shorthand: X ∼ NB(r ,p)
I The geometric distribution is a special case of the negative

binomial distribution when r = 1
I A negative binomial random variable can be thought of as the

concatenation of r random experiments associated with the
geometric distribution
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Thank You

E FTHANK YOU!
H G
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