

MATH 451/551

Chapter 4. Common Discrete Distributions

4.1 Bernoulli Distribution

GuanNan Wang
gwang01@wm.edu

Examples & Notations

Examples

- ▶ **Bernoulli distribution** arises in clinical trials, athletics, polling
- ▶ **Poisson distribution** arises in radioactive decay, arrival processes, quality control
- ▶ **Normal distribution** arises in agricultural yields, IQ scores, heights of children

Notations

- ▶ the support is \mathcal{A}
- ▶ the parameter space is Ω
- ▶ the probability mass function is $f(x) = P(X = x)$
- ▶ the cumulative distribution function is $F(x) = P(X \leq x)$
- ▶ the moment generating function is $M(t) = E(e^{tX})$
- ▶ the population mean is $E(X) = \mu$
- ▶ the population variance is $V(X) = \sigma^2$

Bernoulli Distribution

- ▶ The **Bernoulli distribution** models a **binary** random variable X with support $\mathcal{A} = \{x|x = 0, 1\}$.
- ▶ A discrete random variable X with probability mass function

$$f(x) = \begin{cases} 1 - p & x = 0 \\ p & x = 1 \end{cases}$$

for $0 < p < 1$ is a Bernoulli (p), $Ber(p)$ random variable.

- ▶ **Parameter Space:** $\Omega = \{p|0 < p < 1\}$.
- ▶ **Compact way to write $f(x)$:** $f(x) = p^x(1 - p)^{1-x}$, $x = 0, 1$.
- ▶ **Bernoulli Trial:** A single observation of a Bernoulli random variable.
- ▶ **Outcomes of a Bernoulli trial are generically called:**
 - ▶ success when $X = 1$
 - ▶ failure when $X = 0$

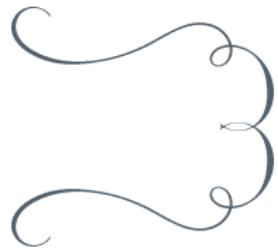
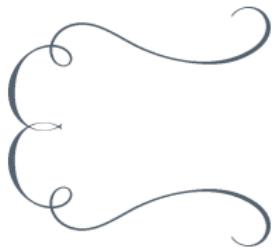
Mean

Variance

Skewness

Kurtosis

Remarks

- ▶ Shorthand: $X \sim \text{Bernoulli}(p)$ or $X \sim \text{Ber}(p)$.
- ▶ Important special case when $p = \frac{1}{2}$ (fair coin toss)
 - ▶ population mean is $\mu = \frac{1}{2}$
 - ▶ population variance is $\sigma^2 = \frac{1}{4}$ (largest possible)
 - ▶ population skewness is 0 (symmetric)
 - ▶ population kurtosis is 1 when $p = \frac{1}{2}$ (the smallest population kurtosis possible for any random variable)
- ▶ Repeated Bernoulli trials form the basis for next three distributions
 - ▶ binomial
 - ▶ geometric
 - ▶ negative binomial

Thank You

THANK YOU!

