

MATH 451/551

Chapter 3. Random Variables 3.4 Moments

GuanNan Wang
gwang01@wm.edu

Population Moment

Population Moment

For a random variable X and positive integer r , the r th population moment X about the origin is $E(X^r)$ when the expectation exists.

Central Population Moment

For a random variable X and positive integer r , the r th population moment X about the population mean is $E\{(X - \mu)^r\}$ when the expectation exists.

Standardized Random Variable

Standardized Random Variable

For a random variable X with population mean μ and positive population standard deviation σ , the random variable $\frac{X-\mu}{\sigma}$ is called a **standardized random variable**, which has population mean 0 and population standard deviation 1 when the expectations exist.

Population Skewness

Population Skewness

For a random variable X with population mean μ and positive population standard deviation σ , the population skewness

$$E \left\{ \left(\frac{X-\mu}{\sigma} \right)^3 \right\} \text{ when the expectation exists.}$$

- ▶ The population skewness is a measure of the symmetry of a probability distribution.
- ▶ If $f(x)$ is symmetric, the population skewness is 0.
- ▶ If $f(x)$ is skewed to the right, the population skewness is positive.
- ▶ If $f(x)$ is skewed to the left, the population skewness is negative.

Population Kurtosis

Population Kurtosis

For a random variable X with population mean μ and positive population standard deviation σ , the population kurtosis $E \left\{ \left(\frac{X-\mu}{\sigma} \right)^4 \right\}$ when the expectation exists.

- ▶ The population kurtosis is a measure of the heaviness of the tails of a probability distribution.

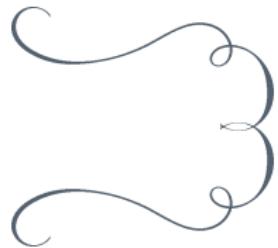
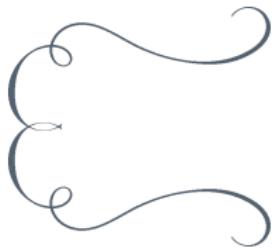
Example 16

Example 16

Find the population skewness and kurtosis of a continuous random variable X that is uniformly distributed between 0 and 1.

Example 17

Example 17



Find the population skewness and kurtosis of a continuous random variable X with probability density function

$$f(x) = \frac{x}{2}, \quad 0 < x < 2.$$

Thank You

THANK YOU!

