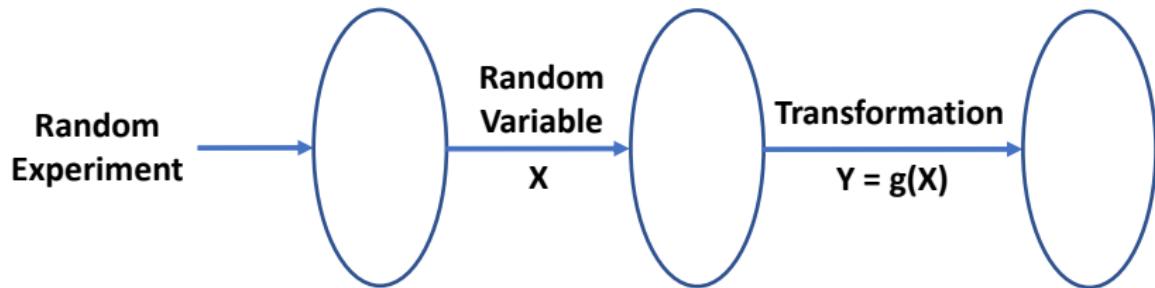


MATH 451/551


Chapter 3. Random Variables

3.3 Transformations

GuanNan Wang
gwang01@wm.edu

Transformations of Random Variables

- ▶ $F_X(x)$: cumulative distribution function for a random variable X ;
- ▶ $F_Y(y)$: cumulative distribution function for a random variable Y ;
- ▶ $f_X(x)$: probability mass/density function for a random variable X ;
- ▶ $f_Y(y)$: probability mass/density function for a random variable Y .

$$F_Y(y) = P(Y \leq y) = P\{g(X) \leq y\}.$$

Note

- ▶ We are often interested in finding the distribution of a function of a random variable.
- ▶ Our goal here is to find the cumulative distribution function of Y .

Example 8

Let the random variable X be uniformly distributed between 0 and 1.
Find the cumulative distribution function of $Y = g(X) = \sqrt{X}$.

$$F_X(x) = \begin{cases} 0, & x \leq 0 \\ x, & 0 < x < 1 \\ 1, & x \geq 1 \end{cases}$$

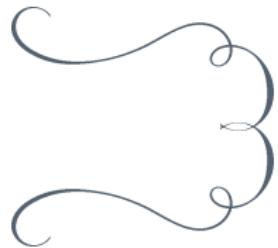
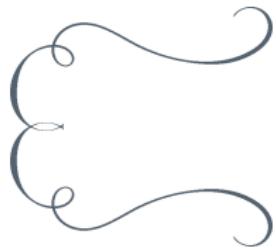
Example 9

Let the random variable X be uniformly distributed between 0 and 1.
Find the probability density function of $Y = g(X) = \arcsin(X)$.

$$F_X(x) = \begin{cases} 0, & x \leq 0 \\ x, & 0 < x < 1 \\ 1, & x \geq 1 \end{cases}$$

Example 10

Let the random variable X have the probability density function



$$f_X(x) = \exp(-x) = e^{-x}, \quad x > 0.$$

Find the cumulative distribution function of $Y = g(X) = X^2$.

Thank You

THANK YOU!

