

# MATH 451/551

## Chapter 2. Probability

### 2.5 Rule of Bayes

GuanNan Wang  
[gwang01@wm.edu](mailto:gwang01@wm.edu)



# Rule of Bayes



Let  $A_1, A_2, \dots, A_n$  be a set of events that partition the sample space  $S$ , and  $P(A_i) > 0$  for  $i = 1, 2, \dots, n$ . For any event  $B$  with  $P(B) > 0$ ,

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

$j = 1, 2, \dots, n$ .

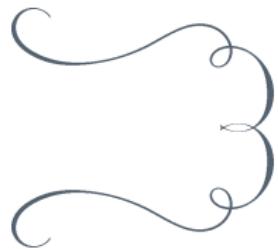
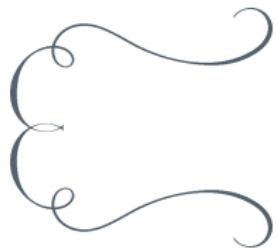
## Example 1



Moe, Curly and Larry are gas station attendants. Moe handles 30% of the customers, Curly handles 50% of the customers, and Larry handles 20% of the customers. They are always supposed to wash the customer's windshield. Moe forgets 1 time in 20, Curly forgets 1 time in 10, and Larry forgets 1 time in 2.

1. What is the probability that a windshield has NOT been washed?
2. Given that a windshield was not washed, what is the probability that it was Curly who didn't wash it?

## Example 2


The “car and goats” problem, also known as the “Monty Hall” paradox or the “Let’s Make a Deal” problem, can be solved using the rule of Bayes. The game show host, Monty Hall, shows you three closed doors. There is a car behind one of the doors and goats behind the other two. If you open the door with the car behind it, you keep the car. You select a door, but before the door is opened, Monty Hall opens one of the other doors to reveal a goat, then gives you the option of switching doors. Is there any advantage to switching?

Thank You



THANK YOU!

