

MATH 451/551

Chapter 1. Introduction

1.3.2 Algebra of Sets

GuanNan Wang
gwang01@wm.edu

Commutativity

$$\begin{aligned}(A \cup B) &= (B \cup A) \\ (A \cap B) &= (B \cap A)\end{aligned}$$

Associativity

$$\begin{aligned} A \cup (B \cup C) &= (A \cup B) \cup C \\ A \cap (B \cap C) &= (A \cap B) \cap C \end{aligned}$$

Distribution Laws

$$\begin{aligned} A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \end{aligned}$$

DeMorgans Laws

$$\begin{aligned}(A \cup B)^c &= (A^c) \cap (B^c) \\ (A \cap B)^c &= (A^c) \cup (B^c)\end{aligned}$$

Power Set

A **power set** associate with a set A is a set that consists of all possible subsets of A .

1. If $A = \{a, b\}$, what is the power set of A ?
2. How many elements are in the power set of $A = \{a, b, c, d, e\}$?

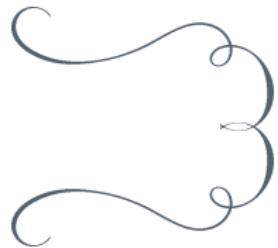
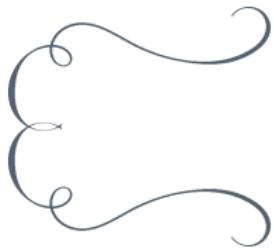
Exclusive OR

Exclusive OR

The **exclusive or** operator \oplus for the sets A and B is defined as

$$A \oplus B = (A \cap B^c) \cup (A^c \cap B).$$

Example

Find $A \oplus B \oplus C$ using Venn diagram.

Thank You

THANK YOU!

