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Theorem

Theorem 6.5

It X and Y are random variables with finite population variances and
covariance, then

V(X+Y)=V(X)+ V(Y)+2Cov(X,Y).
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Example 1

A fair coin is tossed twice. Let X be the number of heads that appear
and Y be the number of tails that appear. Find the population
variance of X + Y.
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Theorem

Theorem 6.6

If X and Y are independent random variables, then Cov(X, Y) = 0.
Cov(X: Y) = ECXY) - Mx My,
X8 Y are indepanduct = E(XT) = EX)ET) = s by

=2 Cw(xY) =0
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Example 2 ﬁ

Example 2 X& Y ose imlz,) = Cov(X,Y) ="

Show that the random variables X and Y that are uniformly

distributed over the support A = {(x, y)|1 < x> + y? < 4} have a
population covariance 0 and are dependent random variables.
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Theorem

Theorem 6.7

It X and Y are independent random variables, then
VIX+Y)=V(X)+ V(Y).

|n awual V(X +Y) = V) +VCY) +2Cov CxY)
& X are I.VJJ—P = Qov(xT) =
S VIX+Y) = V(X) +U()
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Correlation

Correlation

Let X and Y be random variables with finite population means ux and
1y, and finite population variances 0% > 0 and o< > 0, respectively.
The population correlation between X and Y is

(X md(Y )} Cov (XY
© ~ dxdy
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Theorem

Theorem 6.8

It X and Y are independent random variables, then p = 0.

X&Y ort iwb-f = Cw(X,Y) =2
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Theorem

Theorem 6.9

It X and Y are random variables with population correlation pten
-1 <p< 1,
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Example 3

Example 3

Let the discrete random variables X and Y have joint probabillity
mass function f(x, y) given by the entries in the table. Find the
population correlation between X and Y.
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Theorem

Theorem 6.10

Let X and Y be random variables with population correlation p. The
population coorrelation p equals -1 iff the support of X and Y lies on
a line with negative slope. The population correlation p equals 1 iff
the support of X and Y lies on a line with positive slope.

» A population correlatioon of -1 between the random variables X
and Y is often known as a perfect negative correlation.

» A population correlation oof 1 between the random variable X
and Y is often known as a perfect positive correlation.
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Example 4

Example 4

A fair coin is tossed twice. Let X be the number of heads that appear
and Y be the number of tails that appear. Find the population
correlation between X and Y.
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Thank You

THANK YOU! ’<
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