

MATH 451/551

Chapter 6. Joint Distribution 6.3 Covariance & Correlation

GuanNan Wang
gwang01@wm.edu

Theorem

Theorem 6.5

If X and Y are random variables with finite population variances and covariance, then

$$V(X + Y) = \underline{V(X)} + \underline{V(Y)} + 2\text{Cov}(X, Y).$$

$$\begin{aligned} \text{Proof: } V(X+Y) &= E[(X+Y) - \underline{E(X+Y)}]^2 \\ &= E[(X+Y) - (\mu_X + \mu_Y)]^2 \\ &= E[(X - \mu_X) + (Y - \mu_Y)]^2 \\ &= E[(X - \mu_X)^2 + (Y - \mu_Y)^2 + 2(X - \mu_X)(Y - \mu_Y)] \\ &= \underline{E[(X - \mu_X)^2]} + \underline{E[(Y - \mu_Y)^2]} + 2\underline{E[(X - \mu_X)(Y - \mu_Y)]} \\ &= V(X) + V(Y) + 2\text{Cov}(X, Y) \end{aligned}$$

Example 1

The population variance of $X+Y$
must be 0 because the sum of # head
and # tails is always 2.

Example 1

A fair coin is tossed twice. Let X be the number of heads that appear and Y be the number of tails that appear. Find the population variance of $X + Y$.

$$V(X+Y) = V(X) + V(Y) + 2\text{Cov}(X, Y) = \frac{1}{2} + \frac{1}{2} + 2 \cdot \left(-\frac{1}{2}\right) = 0$$

$$\textcircled{1} \quad A = \{ (x, y) \mid (0, 2), (1, 1), (2, 0) \}$$

$$f(x, y) = \begin{cases} \frac{1}{4} & x=0, y=2 \\ \frac{1}{2} & x=1, y=1 \\ \frac{1}{4} & x=2, y=0 \end{cases}$$

$$f_x(x) = \begin{cases} \frac{1}{4} & x=0 \\ \frac{1}{2} & x=1 \\ \frac{1}{4} & x=2 \end{cases}$$

$$x=0, f_Y(y) = \begin{cases} \frac{1}{4} & y=0 \\ \frac{1}{2} & y=1 \\ \frac{1}{4} & y=2 \end{cases}$$

$$\begin{aligned} \textcircled{2} \quad V(X) &= E(X^2) - \{E(X)\}^2 = 0^2 \times \frac{1}{4} + 1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{4} = (0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4})^2 \\ &= \frac{3}{2} - 1^2 = \frac{1}{2} \end{aligned}$$

$$V(Y) = \frac{1}{2}$$

$$\text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y = 0 \cdot 2 \cdot \frac{1}{4} + 1 \cdot 1 \cdot \frac{1}{2} + 2 \cdot 0 \cdot \frac{1}{4} = 1^2 = \frac{1}{2} - 1 = -\frac{1}{2}$$

Theorem

Theorem 6.6

If X and Y are independent random variables, then $\text{Cov}(X, Y) = 0$.

$$\text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y.$$

X & Y are independent $\Rightarrow E(XY) = E(X) E(Y) = \mu_X \mu_Y$

$$\Rightarrow \text{Cov}(X, Y) = 0.$$

Example 2

the converse of THM 6.6 is ~~N~~
NOT true

Example 2

X & Y are indep $\Rightarrow \text{Cov}(X, Y) = 0$

Show that the random variables X and Y that are uniformly distributed over the support $\mathcal{A} = \{(x, y) | 1 < x^2 + y^2 < 4\}$ have a population covariance 0 and are dependent random variables.

$$\pi 2^2 - \pi 1^2 = 3\pi$$

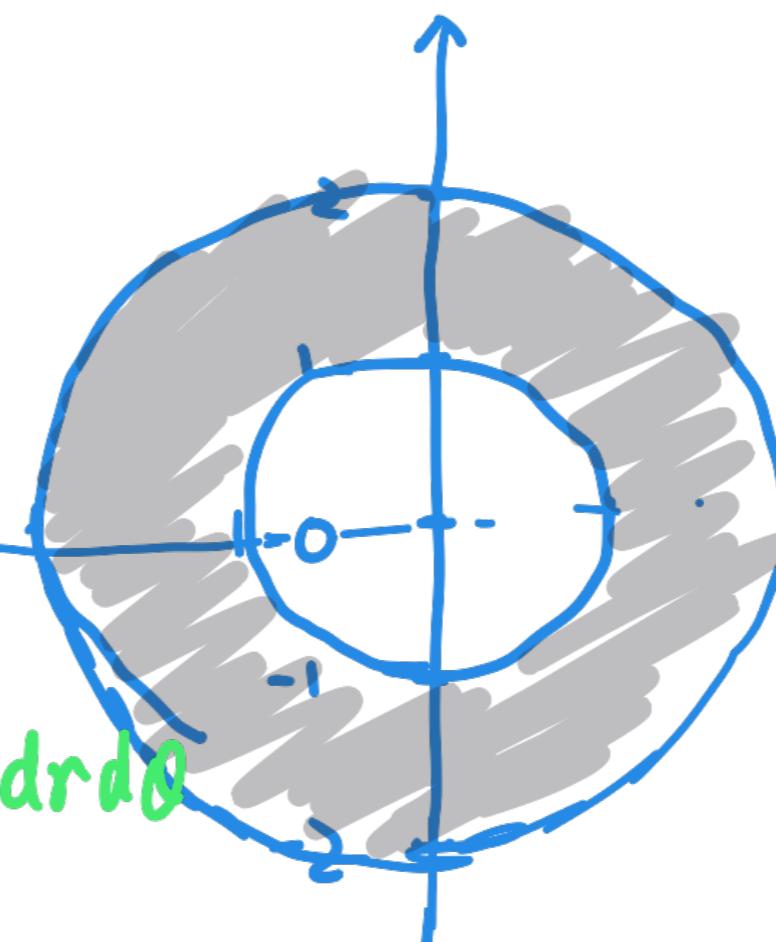
$$f(x, y) = \frac{1}{3\pi}, \quad \boxed{1 < x^2 + y^2 < 4}$$

$$\text{Cov}(X, Y) = \underline{E(XY)} - \mu_X \mu_Y$$

$$E(XY) = \iint_A xy f(x, y) dy dx$$

$$= \int_0^{2\pi} \int_1^2 r \cos \theta r \sin \theta \frac{1}{3\pi} dr d\theta$$

$$= 0$$



$$x = r \cdot \cos \theta$$

$$y = r \cdot \sin \theta$$

$$dy dx = r dr d\theta$$

$$\dots \dots \dots$$

$$\mu_X = E(X) = 0$$

$$\mu_Y = E(Y) = 0$$

$$\Rightarrow \text{Cov}(X, Y) = 0$$

Theorem

Theorem 6.7

If X and Y are independent random variables, then

$$V(X + Y) = V(X) + V(Y).$$

In general $V(X + Y) = V(X) + V(Y) + 2\text{Cov}(X, Y)$

X & Y are indep $\Rightarrow \text{Cov}(X, Y) = 0$

$$\Rightarrow \underline{V(X + Y) = V(X) + V(Y)}$$

Correlation

$$Z = \frac{x - \mu_x}{\sigma_x}$$

Correlation

Let X and Y be random variables with finite population means μ_X and μ_Y , and finite population variances $\sigma_X^2 > 0$ and $\sigma_Y^2 > 0$, respectively.

The **population correlation** between X and Y is

$$\rho = \frac{E\{(X - \mu_X)(Y - \mu_Y)\}}{\sigma_X \sigma_Y} \cdot \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$\rho_{xy} . \text{Corr}(x, Y)$$

Theorem

Theorem 6.8

If X and Y are independent random variables, then $\rho = 0$.

X & Y are indep $\Rightarrow \text{Cov}(X, Y) = 0$.

$$\rho = \frac{\text{Cov}(X, Y)}{\delta_X \delta_Y} = 0.$$

Theorem

$$\text{Cov}\left(\frac{X}{\delta_X}, \frac{Y}{\delta_Y}\right) = E\left(\frac{XY}{\delta_X \delta_Y}\right) - \frac{M_X M_Y}{\delta_X \delta_Y}$$

$$= \frac{E(XY) - M_X M_Y}{\delta_X \delta_Y}$$

Theorem 6.9

If X and Y are random variables with population correlation ρ , then $-1 \leq \rho \leq 1$.

$$\frac{X}{\delta_X} + \frac{Y}{\delta_Y} : \quad \text{Var}\left(\frac{X}{\delta_X} + \frac{Y}{\delta_Y}\right) = \text{Var}\left(\frac{X}{\delta_X}\right) + \text{Var}\left(\frac{Y}{\delta_Y}\right) + 2\text{Cov}\left(\frac{X}{\delta_X}, \frac{Y}{\delta_Y}\right)$$

$$= \frac{\text{Var}(X)}{\delta_X^2} + \frac{\text{Var}(Y)}{\delta_Y^2} + \frac{2\text{Cov}(X, Y)}{\delta_X \delta_Y}$$

$$= 1 + 1 + 2\rho = 2(1 + \rho) \geq 0 \Rightarrow \rho \geq -1$$

$$\frac{X}{\delta_X} - \frac{Y}{\delta_Y} : \quad \text{Var}\left(\frac{X}{\delta_X} - \frac{Y}{\delta_Y}\right) = \text{Var}\left(\frac{X}{\delta_X}\right) + \text{Var}\left(\frac{Y}{\delta_Y}\right) - 2\text{Cov}\left(\frac{X}{\delta_X}, \frac{Y}{\delta_Y}\right)$$

$$= \frac{\text{Var}(X)}{\delta_X^2} + \frac{\text{Var}(Y)}{\delta_Y^2} - \frac{2\text{Cov}(X, Y)}{\delta_X \delta_Y}$$

$$= 1 + 1 - 2\rho \geq 0 \Rightarrow \rho \leq 1$$

Example 3

Example 3

Let the discrete random variables X and Y have joint probability mass function $f(x, y)$ given by the entries in the table. Find the population correlation between X and Y .

	1	2	3	$f_X(x)$
1	0.2	0.1	0.3	0.6
2	0.1	0.1	0.2	0.4
$f_Y(y)$	0.3	0.2	0.5	1

$$\rho = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$= \frac{0.02}{\sqrt{0.24} \sqrt{0.76}} = 0.0468$$

$$\textcircled{1.} \quad \mu_X = E(X) = 1 \times 0.6 + 2 \times 0.4 = 1.4$$

$$\sigma_X^2 = E(X^2) - \{E(X)\}^2 = 1^2 \times 0.6 + 2^2 \times 0.4 - 1.4^2 = 0.24$$

$$\textcircled{2.} \quad \mu_Y = E(Y) = 1 \times 0.3 + 2 \times 0.2 + 3 \times 0.5 = 2.2$$

$$\sigma_Y^2 = E(Y^2) - \{E(Y)\}^2 = 1^2 \times 0.3 + 2^2 \times 0.2 + 3^2 \times 0.5 - 2.2^2 = 0.76$$

$$\textcircled{3.} \quad \text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y = 1 \cdot 1 \cdot 0.2 + 1 \cdot 2 \cdot 0.1 + 1 \cdot 3 \cdot 0.3 + 2 \cdot 1 \cdot 0.1 + 2 \cdot 2 \cdot 0.1 + 2 \cdot 3 \cdot 0.0$$

$$- 1.4 \times 2.2 = 0.02$$

Theorem 6.10

Let X and Y be random variables with population correlation ρ . The population correlation ρ equals -1 iff the support of X and Y lies on a line with negative slope. The population correlation ρ equals 1 iff the support of X and Y lies on a line with positive slope.

- ▶ A population correlation of -1 between the random variables X and Y is often known as a **perfect negative correlation**.
- ▶ A population correlation of 1 between the random variable X and Y is often known as a **perfect positive correlation**.

Example 4

Example 4

A fair coin is tossed twice. Let X be the number of heads that appear and Y be the number of tails that appear. Find the population correlation between X and Y .

$$\mathcal{A} = \{(x, y) \mid (0, 2), (1, 1), (2, 0)\}$$

$$f_{X,Y}(x, y) = \begin{cases} \frac{1}{4} & x=0 \quad y=2 \\ \frac{1}{2} & x=1 \quad y=1 \\ \frac{1}{4} & x=2 \quad y=0 \end{cases}$$

$$\rho = \frac{\text{Cov}(X, Y)}{\delta_X \delta_Y} = \frac{-\frac{1}{2}}{\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}} = -1$$

$$Y = 2 - X$$

$$\textcircled{1} \quad \mu_X = E(X) = 1$$

$$\delta_X^2 = E(X^2) - \{E(X)\}^2 = 0^2 \cdot \frac{1}{4} + 1^2 \cdot \frac{1}{2} + 2^2 \cdot \frac{1}{4}$$
$$= \frac{1}{2}$$

$$\textcircled{2} \quad \mu_Y = E(Y) = 1$$

$$\delta_Y^2 = \frac{1}{2}$$

$$\textcircled{3} \quad \text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y = -\frac{1}{2}$$

Thank You

THANK YOU!

