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Covariance et

Covariance

Let X and Y be random variables with finite population means ux and
Ly, respectively. The population covariance between X and Y is

Cov(X,Y) = E{(X — ux)(Y — py)}.  Covlx:¥)=Ef Of-Aoc)

» Symmetric in its arguments: Cov(X, Y) = Cov(Y, X)
» Defining formula useful for conceptualizing covariance

» If X and Y tend to be on opposite sides of their means together =

population covariance negative
» If X and Y tend to be on the same sides of their means together =

population covariance positive
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Example 1

Example 1 P

A fair coin is tossed(wic® Let X be the number of heads that appear
and Y be the number of tails that appear. Find the population
covariance between X and Y.

Cov( X Y ) = E (X ~Mhe) (Y- JAp)]
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Special Case

Special Case

Variance is a special case of covariance: V(X) = Cov(X, X).
» Bivariate Case: (‘m(X X)  (ov(X,Y)

V(X) Cov(X,Y)
O cartrrg "y )

» Trivariate Case:
( V(X) Cov(X.Y) Cov(X,2Z) )

Cov(Y.X) VYY) Cov(Y.Z)
Cov(Z.X) Cov(Z,Y) V(Z)
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Theorem 6.4

Theorem 6.4

It X and Y are random variables with finite population means n.x and
Ly, respectively, then

Cov(X,Y)=E{(X — ux)(Y —uy)} = E(XY) — uxuy.
Ef (X A (Y-Mp)] = Ef XT ;r'&l\T ;NTK + PPy

A T\MW\.

= B (XY) - My () - My €(X) + Ay
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Example 2

Example 2

A fair coin is tossed twice. Let X be the number of heads that appear
and Y be the number of tails that appear. Find the population
covariance between X and Y using the shortcut formula

Cov(x ) = E(XY) = Mx My
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Example 3

Example 3

Deal two cards from a well-shuffled deck. Let X be the number of

aces dealt and Y be the number of face cards dealt. Using the
shortcut formula, find the population covariance between X and Y.
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Thank You

THANK YOU! ’<
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