

MATH 451/551

Chapter 6. Joint Distribution 6.2 Independent Random Variables

GuanNan Wang
gwang01@wm.edu

events A & B are independent iff $\underline{P(A \cap B) = P(A)P(B)}$

R.Vs X & Y . Let event $A = \{a_1 < X < a_2\}$

event $B = \{b_1 < Y < b_2\}$

A & B independent. $P(a_1 < X < a_2, b_1 < Y < b_2) = P(a_1 < X < a_2) * P(b_1 < Y < b_2)$

$$f(x, y) = f_x(x) * f_Y(y)$$

A & B. iff. $P(A|B) = P(A)$

$P(B|A) = P(B)$

Assume R.V. X & Y are continuous.

$f(x, y)$

$f_{X|Y=y}(x|Y=y)$ & $f_{Y|X=x}(y|X=x)$

$f_{Y|X=x}(y|X=x)$ does NOT depend on value of x .

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{-\infty}^{\infty} \underbrace{f_{Y|X=x}(y|X=x)}_{\uparrow} f_x(x) dx$$

$$= f_{Y|X=x}(y|X=x) \int_{-\infty}^{\infty} f_x(x) dx$$

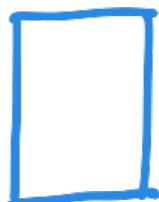
1

$$= f_{Y|X=x}(y|X=x)$$

Independent Random Variables

Let the random variables X and Y (discrete or continuous) have a joint distribution described by $f(x, y)$ and marginal distributions described by $f_X(x)$ and $f_Y(y)$. The random variables X and Y are independent iff $f(x, y) = f_X(x)f_Y(y)$ for all real numbers x and y .

- ▶ Intuitively, if the value $\text{of } X$ does not affect the distribution of Y and if the value of Y does not affect the distribution of X , then X and Y are **independent**.
- ▶ Random variables that are not independent are **dependent**.
- ▶ An equivalent definition can also be written in terms of cumulative distribution: the random variables X and Y are independent iff $F(x, y) = F_X(x)F_Y(y)$ for all real numbers x and y .
- ▶ For X and Y to be independent, the support $\text{of their joint distribution}$ must be a **product space**, i.e., if X has support \mathcal{A} and Y has support \mathcal{B} , then the product space is $\{(\mathbf{x}, \mathbf{y}) | \mathbf{x} \in \mathcal{A} \text{ and } \mathbf{y} \in \mathcal{B}\}$



Example 1

Example 1

Are the random variables X and Y with joint pmf given below independent?

	1	2	3	$f_X(x)$
1	0.2	0.1	0.3	0.6
2	0.1	0.1	0.2	0.4
$f_Y(y)$	0.3	0.2	0.5	

$$f(x, y) \neq f_X(x) f_Y(y) \quad f_{(1,1)} \neq f_X(1) * f_Y(1)$$
$$0.2 \neq 0.6 * 0.3 = 0.18$$

$\therefore X \text{ & } Y \text{ are NOT independent}$

Example 2

Example 2

Let X_1 and X_2 be random variables with joint pdf

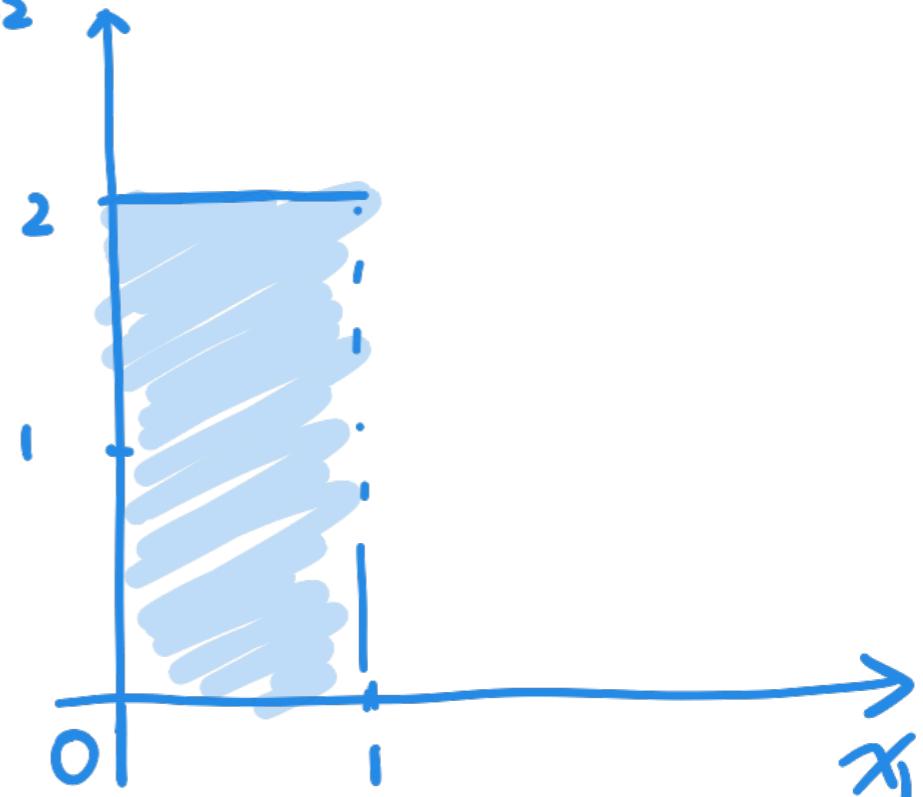
$$f(x_1, x_2) = x_1 x_2, \quad 0 < x_1 < 1, \quad 0 < x_2 < 2$$

Are X_1 and X_2 independent?

product space ✓

$$f_{X_1}(x_1) = \int_0^2 f(x_1, x_2) dx_2 = \int_0^2 x_1 x_2 dx_2 = \frac{x_1}{2} x_2^2 \Big|_0^2 = 2x_1, \quad 0 < x_1 < 1$$

$$f_{X_2}(x_2)$$



Thank You

THANK YOU!

