

MATH 451/551

Chapter 3. Random Variables
3.5 Inequalities

GuanNan Wang
gwang01@wm.edu

Markov's Inequality

Markov's Inequality

Let X be a random variable with nonnegative support (that is, $P(X \geq 0) = 1$) for which $E(X)$ exists. Then for any positive constant a

$$P(X \geq a) \leq \frac{E(X)}{a}.$$

Assume X is continuous

$$\begin{aligned} E(X) &= \int_0^\infty xf(x)dx = \int_0^\infty xf(x)dx = \int_0^a xf(x)dx + \int_a^\infty xf(x)dx \\ &\geq \int_a^\infty xf(x)dx \geq \int_a^\infty af(x)dx = a \int_a^\infty f(x)dx = aP(X \geq a) \\ \therefore P(X \geq a) &\leq \frac{E(X)}{a} \end{aligned}$$

Example 1

Example 1 $\{1, 2, 3, 4, 5, 6\}$

Roll a fair die 60 times. Let the random variable X be the number of sixes that appear. Use Markov's inequality to find an upper bound on the probability of rolling 30 or more sixes.

$$E(X) ? \Leftarrow f(x) = ? \quad x = \# 6 \Rightarrow A = \{0, 1, 2, \dots, 60\}$$

$$f(x) = P(X = x) = \binom{60}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{60-x} \Rightarrow X \text{ is discrete.}$$

$$E(X) = \sum x f(x) = \sum_{x=0}^{60} x f(x) = \sum_{x=1}^{60} x f(x) = \sum_{x=1}^{60} x \binom{60}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{60-x}$$

$$= \sum_{x=1}^{60} x \frac{60!}{x! (60-x)!} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{60-x}$$

$$\text{Let } y = x-1$$

$$= \sum_{y=0}^{59} \frac{(y+1)!}{y! (60-(y+1))!} \left(\frac{1}{6}\right)^y \left(\frac{1}{6}\right)^{y+1} \left(\frac{5}{6}\right)^{60-(y+1)}$$

$$= \sum_{y=0}^{59} \frac{59! \cdot 60}{y! (59+1-y)!} \left(\frac{1}{6}\right)^y \left(\frac{5}{6}\right)^{59+1-y}$$

$$\begin{aligned}
 E(X) &= \sum_{y=0}^{59} \frac{60 \cdot 59!}{y! (59-y)!} \left(\frac{1}{6}\right)^y \left(\frac{5}{6}\right)^{59-y} \\
 &= 60 \cdot \frac{1}{6} \sum_{y=0}^{59} \frac{59!}{y! (59-y)!} \left(\frac{1}{6}\right)^y \left(\frac{5}{6}\right)^{59-y} \\
 &= 60 \cdot \frac{1}{6} = 10
 \end{aligned}$$

$$P(X \geq 30) \leq \frac{E(X)}{30} = \frac{10}{30} = \frac{1}{3}.$$

Markov's Inequality Extension

Markov's Inequality Extension

Let $g(X)$ be a nonnegative function of the random variable X . If $E\{g(X)\}$ exists, then, for every positive, real constant a ,

$$P\{g(X) \geq a\} \leq \frac{E\{g(X)\}}{a}.$$

Chebyshev's Inequality

Chebyshev's Inequality

Let the random variable X have a finite population mean μ and a finite population variance σ^2 . For every real-valued $k > 0$

$$P\{|X - \mu| \geq k\sigma\} \leq \frac{1}{k^2}.$$

Let $Y = (X - \mu)^2$ & $a = k^2\sigma^2$

By Markov Inequality: $P(Y \geq a) \leq \frac{E(Y)}{a}$

$$P((X - \mu)^2 \geq k^2\sigma^2) \leq \frac{E\{(X - \mu)^2\}}{k^2\sigma^2} = \frac{V(X)}{k^2\sigma^2} = \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}$$
$$= P(|X - \mu| \geq k\sigma)$$

Example 2

$$P(|X-\mu| \geq k\delta) \leq \frac{1}{k^2}$$

Example 2

Let X be the number of screws delivered to a box by an automatic filling device. Assume $\mu = 1000$ and $\sigma^2 = 25$. There are problems associated with having too many (giving away free product) or too few (potential irritated customers) screws in a box. Use Chebyshev's inequality to find a bound on $P(994 < X < 1006)$.

$$\frac{1006 - 1000}{\sqrt{25}} = 1.2$$

$$\frac{1000 - 994}{\sqrt{25}} = 1.2$$

$$\begin{aligned} P(994 < X < 1006) &= P(\mu - 1.2\delta < X < \mu + 1.2\delta) \\ &= P(|X-\mu| < 1.2\delta) \geq 1 - \frac{25}{36} = \frac{11}{36} \end{aligned}$$

$$P(|X-\mu| \geq 1.2\delta) \leq \frac{1}{1.2^2} = \frac{25}{36}$$

Thank You

THANK YOU!

