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Properties of Expected Values

Property 1

Let X be a rauddom variable defined on the support A with
probability mass function f(x) if X is discrete and probability density
function f(x) if X is continuous. The expected value of g(X) is

> 9(x)f(x) X is discrete
Eg(X)) = I J?](X)f(x)dx X is continuous

when the sum of integral exists. When the sum or integral diverges,
the expected value is undefined.
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Properties of Expected Values

Property 2

Given a random variable X and a real constant ¢
E(c) = c.
Assume X conhinwond . a(x) = C,
E(c) = mf"x) dx = J C‘f(':() dx = ¢ :f(«)dfx
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Properties of Expected Values

Property 3

Lot the-continuous—randem-variable X he Givtn @ roadom ver
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Example 9

Example 9

Let the continuous random variable X be uniformly distributed
between 0 and 1 with probability density function

fx(X =1, 0<x<1.

Find E (VX).
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Example 10

Example 10
Consider the discrete random variable X with probability mass
function 1
fx(Xx) = 3 x=-2,0,1.
Find E (| X| + 4).
E(1X1+4) = 3 Jeofe _
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Properties of Expected Values

Property 4
Give a random variable X,

E{cg(X)} = cE{g(X);}.

when the expected values exist.
Assume X s cowhauons A (X) = ¢ %’(f\)
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Properties of Expected Values

Property 5

Give a random variable X and functions g4 (X) and g»(X),

E{g1(X) + 0o(X)} = E{g1(X)} + E{gs(X)}.

. VWM MA
when the expected values exist.

X 1§  Covbwwnd h (X) = 3‘() HJ,,(X)

E{gu0 +0] = [ hemfondx < g+ g fmdar
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@1+ E 19 0)
Property 5 (extension)

Give a random variable X and functions Mz), ., Ok(X)
E{g1(X)&(X)B - @ok(X)} = E{g:(X)}+E{g2(X)}+ - -+E{gk(X)}.
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Thank You

THANK YOU!
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