

MATH 451/551

Chapter 3. Random Variables
3.3 Mixtures

GuanNan Wang
gwang01@wm.edu

Mixtures

Let X_1, X_2, \dots, X_k be random variables drawn from distributions with cumulative distribution functions $F_{X_1}(x), F_{X_2}(x), \dots, F_{X_k}(x)$. Let p_1, p_2, \dots, p_k be the positive mixing probabilities, where $p_1 + p_2 + \dots + p_k = 1$. Then X has a **finite mixture distribution** if its cumulative distribution function is

$$F_X(x) = p_1 F_{X_1}(x) + p_2 F_{X_2}(x) + \dots + p_k F_{X_k}(x).$$

- ▶ A finite mixture distribution effectively mixes k distributions according to the mixing probabilities p_1, p_2, \dots, p_k in the same fashion that a chemist mixes k solutions.
- ▶ The mixing probabilities correspond to the quantity of the solution mixed and the cumulative distribution functions model the different solutions being mixed.

Example 11

There are two factories that produce light bulbs. Factory 1 produces bulbs that have lifetimes modeled by the random variable X_1 with cumulative distribution function

$$F_{X_1}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-x} & x \geq 0 \end{cases}$$

$$X_1 \sim \text{Exp}(1)$$

$$f_{X_1}(x) = e^{-x}, x \geq 0$$

Factory 2 produces bulbs that have lifetimes modeled by the random variable X_2 with cumulative distribution function

$$F_{X_2}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-2x} & x \geq 0 \end{cases}$$

$$X_2 \sim \text{Exp}(2)$$

$$f_{X_2}(x) = 2e^{-2x}, x \geq 0$$

Furthermore, it is known that $2/3$ of the bulbs come from Factory 1 and $1/3$ of the bulbs come from Factory 2. What is the probability distribution of the lifetime of a bulb whose factory of origin cannot be identified.

$$F_{X_1}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-x} & x \geq 0 \end{cases}$$

$$F_{X_2}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-2x} & x \geq 0. \end{cases}$$

$$P_1 = 2/3$$

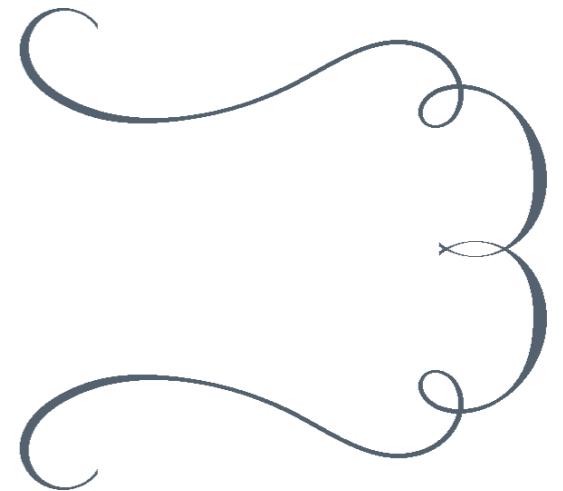
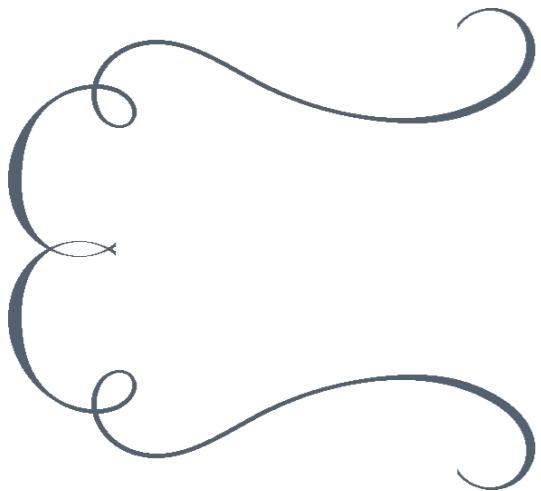
$$P_2 = 1/3$$

$$F_X(x) = P_1 F_{X_1}(x) + P_2 F_{X_2}(x)$$

$$= \frac{2}{3} (1 - e^{-x}) + \frac{1}{3} (1 - e^{-2x}). \quad x \geq 0$$

$$= 1 - \frac{2}{3} e^{-x} - \frac{1}{3} e^{-2x} \quad x \geq 0.$$

$$F_X(x) = P(\underbrace{X \leq x}_{A})$$



\uparrow $P(A | B_1) P(\bar{B}_1)$
 $+ P(A | B_2) P(B_2)$
 \uparrow light bulb from Factory 1
 \uparrow light bulb from Factory 2

Thank You

3

THANK YOU!

