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Motivating Example

Example 1

What probability distribution formalizes the notion of “equally-likely”
outcomes in unit interval [0, 1]?
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Continuous Random Variable

Continuous Random Variable

A continuous random variable X has a suggrtset A that is
uncountable.
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Probability Density Function (PDF)

Probability density function (pdf) existence conditions:

» 0 < f(x), x € A. P(X=a)=F(X=b)=°

> WdX:1.

> ﬁoréc A, P(X € A) = [, f(x)dx.

» Forreal constants a< b, Pla< X < b) = fab f(x)dx.
» Endpoints don’t matter:

QAN NAANNNS

Pla<X<b)=Pla<X<b)=Pla<X<b)=P@a@asXxXx<hn),

< X <
and for any value a, P(X = a) = 0.
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Example 2
Let the continuous random variable X have pdf

f(x) == 0<x<2
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Example 3
Let the continuous random variable X have probability density

function f(xX)=e*, x>0
Find the probability that | x| Is even. The floor of X is even is

equivalent to X falling in"one of these intervals
[0,1), [2,3)7 [4’5)7 1-(4)
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Thank You

THANK YOU!
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