

MATH 451/551

Chapter 2. Probability

2.6 Independent Events

$$P(A|B) = P(A)$$

GuanNan Wang
gwang01@wm.edu

Independent Events

Events A and B are **independent** if and only if
$$P(A \cap B) = P(A)P(B).$$

$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

The following four statements are equivalent:

- ① $\blacktriangleright A$ and B are independent events,
- ② $\blacktriangleright \underline{P(A \cap B)} = \underline{P(A)P(B)},$
- ③ $\blacktriangleright P(A|B) = P(A),$
- ④ $\blacktriangleright P(B|A) = P(B).$

$$P(A|B) = \frac{\cancel{P(A \cap B)}}{P(B)}$$
$$P(A) \neq$$

Remarks: The last two statements capture the essence of the independence of two events: the occurrence (or nonoccurrence) of one event doesn't affect the probability of another event occurring. Events that are not independent are said to be **dependent**.

Example 1

A single card is drawn at random from a 52-card deck. Let the event H be that the suit of the card is hearts. Let the event Q be that the rank of the card is a queen. Are the event H and Q independent?

$$P(H) = \frac{13}{52} = \frac{1}{4}$$

$$P(Q) = \frac{4}{52} = \frac{1}{13}$$

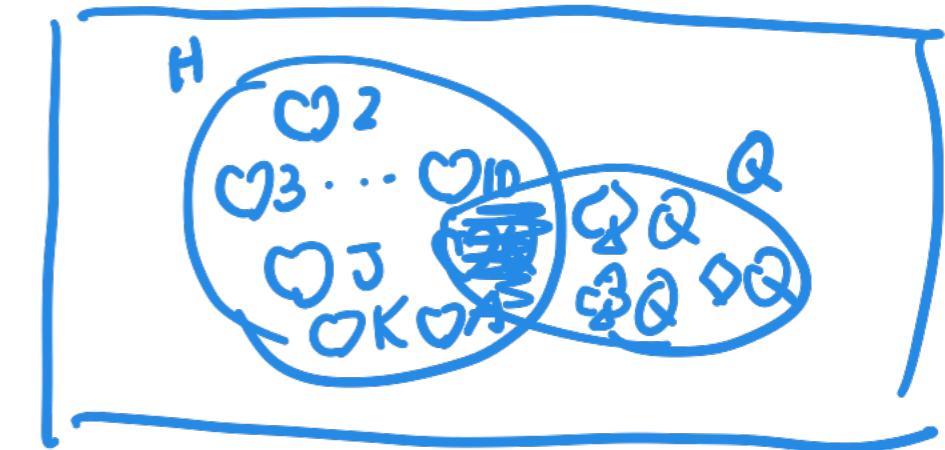
$$P(H \cap Q) = \frac{1}{52}$$

$$P(H) * P(Q) = \frac{1}{4} * \frac{1}{13} = \frac{1}{52}$$

$\therefore H \& Q$ are independent

4 suits 13 Cards.

2, 3, ..., 10, J, Q, K, A



A, B ① A & B disjoint.

②. A & B independent

If A & B disjoint, then A & B independent?

$$A \cap B = \emptyset$$

$$P(A \cap B) = 0$$

Assumption
 $P(A), P(B) \neq 0$

$$\frac{P(A|B) = 0}{P(B|A)} \neq \frac{P(A)}{P(B)}$$

Example 2

A fair coin is tossed twice. Show that the events
 A: the first toss yields heads, $A = \{(H, H), (H, T)\}$
 B: the second toss yields heads, $B = \{(H, H), (T, H)\}$
 C: the two tosses yield different results, $C = \{(H, T), (T, H)\}$
 are pairwise independent \checkmark but $P(A \cap B \cap C) \neq P(A)P(B)P(C)$.

$$\textcircled{1} \quad P(A \cap B) \neq P(A) P(B)$$

$$P(A \cap B) = \frac{1}{4} =$$

$$P(A) = \frac{2}{4} = \frac{1}{2} \quad P(B) = \frac{2}{4} = \frac{1}{2} \quad P(A)P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(A \cap B \cap C) = 0$$

 \times

$$\textcircled{2} \quad P(A \cap C) \neq P(A) P(C)$$

$$P(A \cap C) = \frac{1}{4} =$$

$$P(C) = \frac{2}{4} = \frac{1}{2} \quad P(A)P(C) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(A)P(B)P(C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$\textcircled{3} \quad P(B \cap C) = P(B) P(C)$$

$$P(B \cap C) = \frac{1}{4}$$

$$P(B)P(C) = \frac{1}{4}$$

Mutually Independent

Mutually Independent

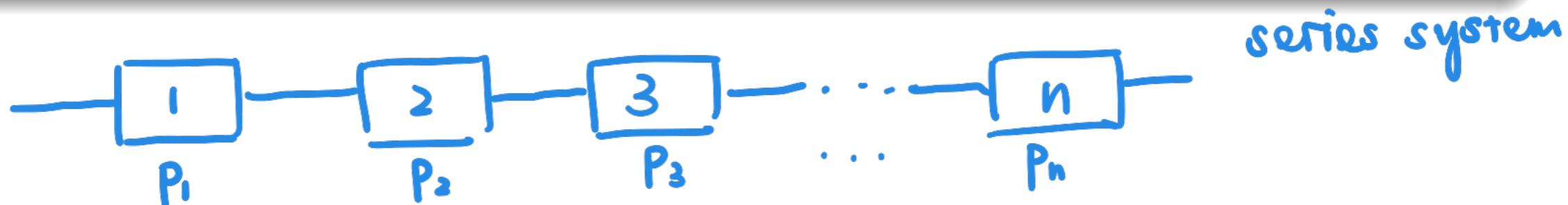
Events A_1, A_2, \dots, A_n are **mutually independent** if and only if the probability of occurrence of the intersection of any 2, 3, ..., or n of these events is equal to the product of their associated probabilities of occurrence.

If the case of three events, A_1, A_2 and A_3 , the following equations must be satisfied for three events to be mutually independent:

$$\begin{aligned} P(A_1 \cap A_2) &= P(A_1)P(A_2) \\ P(A_1 \cap A_3) &= P(A_1)P(A_3) \\ P(A_2 \cap A_3) &= P(A_2)P(A_3) \\ \underline{P(A_1 \cap A_2 \cap A_3)} &= \underline{P(A_1)P(A_2)P(A_3)} \end{aligned} \quad \left. \begin{array}{l} \text{pairwise indep.} \\ \end{array} \right\}$$

Example 1

Consider a series system of n mutually independent components with probabilities of functioning p_1, p_2, \dots, p_n . If all components must function for the system to function, find the probability that the system functions.



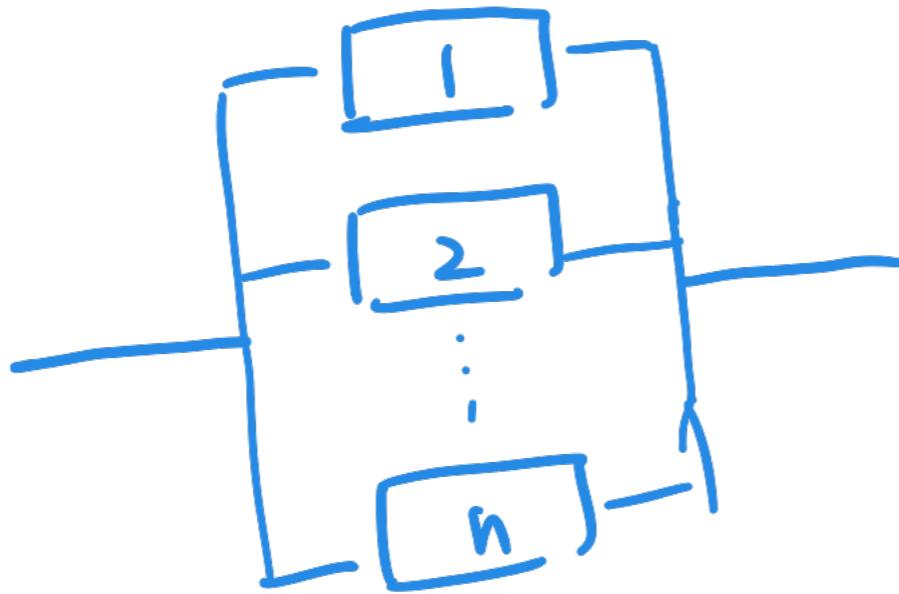
$$\begin{aligned} P(\text{system funcs}) &= P(\text{all components func}) \\ &= P(C_1 \cap C_2 \cap \dots \cap C_n) \end{aligned}$$

$$\begin{aligned} &\text{mutually} \\ &\text{indep} \\ &= P(C_1) P(C_2) \dots P(C_n) \\ &= p_1 \cdot p_2 \cdot p_3 \dots p_n \end{aligned}$$

Example 2

Consider a parallel system of n mutually independent components with probabilities of function, find the probability that the system functions.

$$P_1, P_2, \dots, P_n$$



parallel system

$$\begin{aligned} P(\text{system fails}) &= 1 - P(\text{system fails}) \\ &= 1 - P(\text{all components fail}) \\ &= 1 - P(C_1 \text{ fails}) P(C_2 \text{ fails}) \dots P(C_n \text{ fails}) \\ &= 1 - (1 - P_1)(1 - P_2) \dots (1 - P_n) \end{aligned}$$

Thank You

7

THANK YOU!

