

MATH 451/551

Chapter 2. Introduction

2.1 Random Experiments, Sample Spaces, and Events

GuanNan Wang
gwang01@wm.edu

Random Experiment

A *random experiment* is one in which the outcome is subject to chance. Every possible outcome can typically be described prior to the execution of the random experiment.

Associated with a random experiment is the set of all possible outcomes to that experiment. For example,

- ▶ when a quarterback throws a pass in football, there are three possible outcomes: a complete pass, an incomplete pass, and an interception;
- ▶ when a gambler bets on “red” in roulette, there are two possible outcomes: winning and losing;
- ▶ when a backgrammon player rolls a pair of dice, there are 11 different sums that are possible: 2, 3, . . . , 12.

Sample Space

Sample Space

The set of all possible outcomes ~~too~~ of a random experiment is called the **sample space** and is denoted by S .

Random Experiment	Sample Space
Roll a die and observe up face	$S = \{1, 2, 3, 4, 5, 6\}$
Roll two dice and observe the product of the up faces	
Roll a red die and a green die and observe the difference between the red up face and the green up face	
Roll three dice and observe the sum of the up faces	$S = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$
Toss a coin twice and observe the sequence of H's and T's	$S = \{(H, H), (H, T), (T, H), (T, T)\}$
Toss a coin twice and observe the number of H's	$S = \{2, 1, 0\}$

D_1^R	D_2^G	$S = \{1, 2, 3, 4, 5, 6, 8, 9\}$	D_1	D_2	
1	1	10, 12, 15, 16, 18, 20,	4	1	4 3
1	2	24, 25, 30, 36}	4	2	8 2
1	3		4	3	12 1
1	4		4	4	16 0
1	5		4	5	20 -1
1	6		4	6	24 -2
2	1		4	1	5 4
2	2	4, 5 {	5	2	10 3
2	3		5	3	15 2
2	4		5	4	20 1
2	5		5	5	25 0
2	6		5	6	30 -1
3	1		6	1	6 5
3	2		6	2	12 4
3	3		6	3	18 3
3	4		6	4	24 2
3	5		6	5	30 1
3	6		6	6	36 0

Remarks

- ▶ The sample space: in the above examples have one common attribute: they all correspond to sets that are known as **finite sets**. Each samples space has a finite number of elements.
- ▶ A set that is not finite is known as an **infinite set**. Furthermore, a set is denumerable if its elements can be placed in a one-to-one correspondence with the natural numbers.

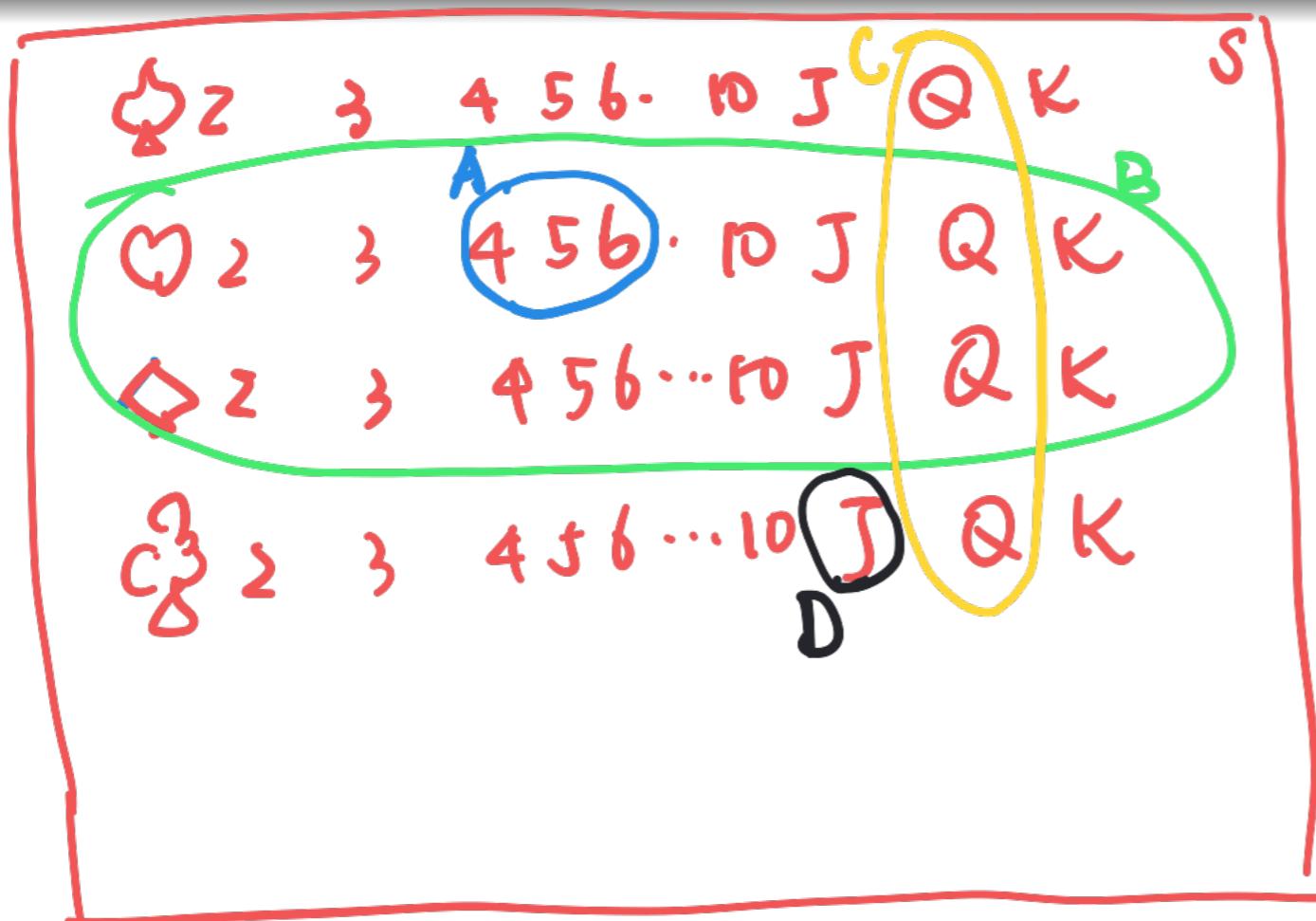
- ▶ A set is **countable** if it is either finite or denumerable.
- ▶ A set is **uncountable** if it is not countable.

Event

An **event** is any collection of possible outcomes of an experiment, that is, any subset of S (includes S itself). Let the **event** A be a subset of the sample space S . If an outcome to a random experiment is in A then event A has occurred.

- ▶ A random experiment has multiple events.
- ▶ The event with the smallest number of outcomes is the empty set \emptyset , which never occurs.

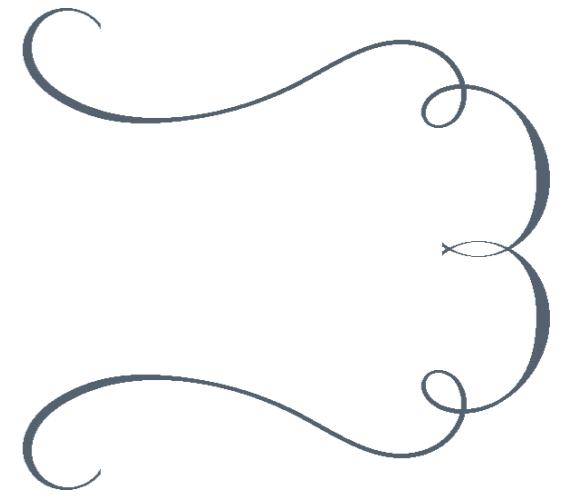
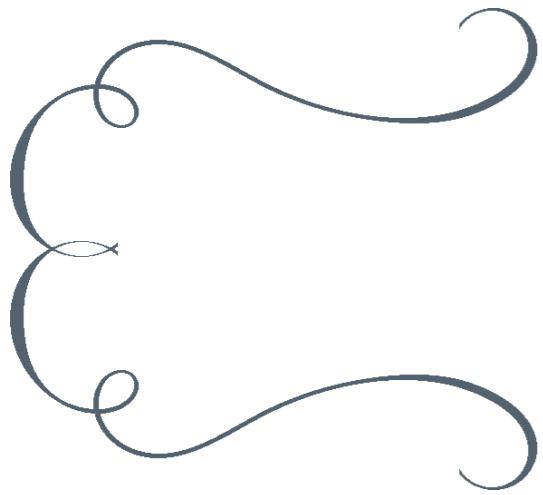
Set Theory	Probability
universal set	sample space
elements	outcomes of a random experiment
subsets	events


Example 1

Observe the top card drawn on a 52-card deck. Define the events:

A : 4, 5, or 6 of \heartsuit	B : any red card
C : any queen	D : jack of \clubsuit

Drew a Venn diagram that relates these events to one another.

$A \subset B$
 A, C, D mutually disjoint
 $B \cap C = \{\heartsuit Q, \diamondsuit Q\}$
 $B \& D$ disjoint.

Thank You

THANK YOU!

