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Abstract
Let U(n) be the group of n x n unitary matrices. We show that if ¢ is a linear transfor-
mation sending U(n) into U(m), then m is a multiple of n, and ¢ has the form

A= V(AR L)® (A" L)W

for some V,W € U(m). From this result, one easily deduces the characterization of linear
operators that map U(n) into itself obtained by Marcus. Further generalization of the main
theorem is also discussed.
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1 Main Result

Denote by M, the algebra of n x n complex matrices. Let U(n) be the group of n X n unitary
matrices. The purpose of this note is to prove the following result.

Theorem 1 Suppose ¢ : M, — M,, is a linear transformation satisfying $(U(n)) C U(m).

Then m is a multiple of n and
H(A)=V[(A® L) & (A" ® L)W
for some fized VW € U(m).

For any linear map ¢ : M, — M, satisfying ¢(U(n)) C U(m), one can replace it by
the mapping ¢ of the form A — ¢(I,)"'¢(A). Then ¢ : M,, — M, is linear, unital, i.e.,
Y(I,) = I, and satisfies ¢ (U(m)) C U(n). Using this observation, one sees that Theorem
1 is equivalent to the following.

Theorem 2 Let ¢ : M,, — M,, be a unital linear transformation satisfying ¢(U(n)) C
U(m). Then m is a multiple of n and

HA)=V[AeL)s (A ® L)V (1)
for some fized V € U(m).

By Theorems 1 and 2, one easily deduces the following result of Marcus [5].

1Supported by PIMS Postdoctoral Fellowship.
2Research partially supported by an NSF grant.



Corollary 3 A linear operator ¢ on M, satisfying ¢(U(n)) C U(n) must be of the form
A VAW or A VAW

for some VW € U(n). If, in addition, we assume that ¢ is unital, then ¢ is an (algebra)
automorphism or anti-automorphism.

Let GL(m) be the group of m x m invertible matrices. By a result of Auerbach [1] (see
[3] for an elementary proof), if G is a bounded subgroup of GL(m), then there exists a
positive definite matrix P € M, such that PGP~! C U(m). So, if ¢ : M,, — M,, satisfies
¢(U(n)) C G for a bounded subgroup G of GL(m), then we may apply Theorem 1 to the
mapping A — P@(A)P~" to determine the structure of ¢. Thus, we have the following
corollary.

Corollary 4 Suppose ¢ : M, — M,, is a linear transformation such that $(U(n)) C G,
where G is a bounded subgroup of GL(m). Then m is a multiple of n and

HA)=LV[(A® L) (A" ® L)L (2)
for some fized L € GL(m) and V € U(m).

If we just assume that ¢(U(n)) C GL(m), the conclusion of Corollary 4 will not hold as
shown by the following example.

Example 5 Consider the unital linear ¢ : My; — M, defined by

<a b) o <a ib)

c d c d)’

One readily checks that ¢(U(2)) C GL(2). However, ¢ does not preserve the rank of matrices,
and hence is not of the form (2) with L € GL(2) and V € U(2).

Marcus and Purves [6, Theorem 2.1] showed that Corollary 3 is valid if we replace U(n)
by GL(n). One may wonder whether Theorem 1 or Theorem 2 is valid if we replace U(m)
and U(n) by GL(m) and GL(n), respectively. This is not true as shown by the following
example, which is a slight modification of [2, Example 4.3 C].

Example 6 Consider the unital linear map ¢ : My — Mg defined by

0 b 0
(Cl b>}_><a.f3 b_[3>_|_ 03@ c 0 —b ‘
c d CI3 d_[3
0 ¢ 0
One readily checks that det(¢(A)) = det(A4)?, and hence ¢(GL(2)) C GL(6). However,

1) <<(1) é)) is not similar to —I3 @ Is. Hence, ¢ is not of the form (1) with V' € GL(6).




2 Proof of Theorem 2

Let X = [1] & —I,—;. Since Y = ¢(X) and ¢(0.6] + 0.8:X) = 0.6 + 0.8:Y are unitary, it
follows that Y is both hermitian and unitary. So we can further assume that Y = I 8 —1,,, _i;
otherwise, replace ¢ by a mapping of the form A — W*¢(A)W for some W € U(m) such
that W*¢(X)W =Y. We always assume that

o(In) = I and A& —Iy) = e & —Lni (3)

in the rest of the proof. Our result will follow once we establish the following.

Assertion There exist V € U(m) and nonnegative integers r and s with r + s = k such that
Vo(A)V* is a block matriz (Aij)1<ij<n, where Ajj = a;I, & ajl, for all1 < 1,5 <n.

We prove the Assertion by induction on n > 2. When n = 2, consider the matrix
T = ((1) (1)> Note that ¢(T), $(0.61 4 0.8:T") and ¢(0.6([1] & [—1]) 4+ 0.8T") are all unitary,

0

U< 0
unitary matrix U € U(k). We can further assume that U = Ii; otherwise, replace ¢ by
the mapping A — (U* @ I)¢p(A)(U & I). Next, consider § = (_01 é) Then ¢(S5),
$(0.6I + 0.85) and ¢(0.6([1] & [—1]) + 0.8:5) are all unitary, which is possible if and only

if ¢(S) = (_(‘)/* g) Since ¢(0.6T + 0.8:5) are also unitary, we see that V' is hermitian.

which is possible if and only if & = m — k, i.e. m = 2k, and ¢(T) = (

) for some

We can further assume that V = I, & —I;_,; otherwise, replace ¢ by a mapping of the form
A (W*a WHe(A) (W & W), where W € U(m/2) satisfies W*VW = I, & —[;_5. As a
result, the modified mapping is of the asserted form with V = I,,,.

Now, suppose the Assertion is true for n = p > 2, and consider n = p + 1. By (3), we
have

Moreover, for any U € U(p) and any p € C with |u| = 1, we have ¢([1] & pU) € U(m).
It follows that ¢([1] & U) = I & #(U) € U(m). By induction assumption, there exist
W € U(m — k) and integers [ and s such that m — k = pl, and for any A = (a;;) € M, we
have ¢(A) = W(A;;)W*, where A;; = a;;I, ® a;,_, for all 1 <i,5 < p. We may assume
that W = I,,_x; otherwise, replace ¢ by the mapping A — (I & W*)o(A)(I & W). Thus,
for any A = (a,j) € M, we have

(1] ® A) = I & (Ajj), Aij = aijls © ajili—s. (4)
Now, for X =0, @ [1], we have
A(X) =0p & 1.
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We can apply the previous argument to ¢(U & [1]) for U € U(p) and conclude that there
exist V € U(m —[) and integers u,v such that m — I = pu, and for any B = (b;;) € M,

P(Ba[1]) =V(Bij)V" &L,  Bij=bijl, & bjilus. ()

Next, consider X = [1] © 0,1 & [1]. By (4) and (5), we see that

HNX) =V 0oV B L =11 & 0pgt B I
Hence u = k and V =V} & U, for some Vi € U(k), Uy € U(m — 1 — k). Moreover, from
m — k = pl and m — [ = pu, we have k = [ and m = k(p + 1).

Let E;; € M,_; be the matrix with an 1 at the (7, 7)-th position and 0 elsewhere. By
considering ¢(X) with X = [1] § E;; & [1], we see that V = Vi @ Vo & ... & V], for some
Vi,...V, € U(k). By considering ¢(X) for X = [1]| & E;; + E;; @ [1], we see that V, =
Vs = ... =1V,. By considering [1] & E;; & [1], we see that v = s and V3 = Y] & ¥, for some
Vi € U(s), Yy € U(k — s). We may now assume that V = [,,; otherwise, replace ¢ by the
mapping

A Vi & (Lo W) 6(A)Vi & (I, @ V2)].
Hence, (4) and (5) hold with V' = I,,; so ¢(A) = (Ai;) where A;; = a,;;l, & ajilp_, if

(i,)) # (Lp+1) or (p+1,1).
Now, apply the previous argument to ¢(C) for those matrices C € M1 such that
c2j = ¢iz =0 for i # 2 # j and 3 = 1. We see that there exists X, Y € U(k) so that

A pr1 = X(a1pp1 L @ apr11 s )Y™ and  Appry = Y(aps11Ls B aq py1li—s) X
The rest of our proof is to show that X and Y may be assumed to be I;. To this end, let
06 0---0 0.8

—0.8 0---0 0.6
oL,
0 0

Then ¢(U) € U(m). The submatrix of ¢(U) formed by the first 2k rows equals

( 0.61 0---0 X]J0.81, 650k_5]Y*>
—0.81; B 0p—s  *---% 0.61, @ O0_s

and has orthonormal row vectors. Therefore X[I, & 0r_,]Y™* = I, & 04_,. Next, considering
U*, we have X[0, & Iy_s]Y* = 0, & Ix_s. Thus for (z,5) = (1,p+ 1) or (p+ 1,1), we also
have A; ; = a;;Is® aj;I;_s. The proof of our Assertion is hereby completed, and the theorem
follows. O

Note added in proof.
Professor Peter Semrl pointed out that Theorem 2 can also be proved by establishing the
following.



Lemma 7 If ¢ : M,, — M,, is a unital linear map satisfying 4(U(n)) C U(m) then ¢(H?) =
&(H)? for any Hermitian H € M,.

Proof. Suppose H € M,, is Hermitian. Then
e =T+ itH—t*H*/24+ -+ and  ¢(e"™) = T 4 itp(H) — t*p(H?) /2 + - -

are unitary. Thus,

I:gb(eitH)qb(eitH)* — (I—I_li’tqé(H)—tzgﬁ(Hz)/Q—F"‘)(I—ité(H)*—t2¢(H2)*/2_|_.-.)_

Comparing the coefficients of ¢, we see that i¢(H) — ip(H)* = 0, i.e., ¢(H) is Hermitian.
Now, comparing the coefficient at t*, we see that —¢(H?)/2 + ¢(H)* — ¢(H?)/2 = 0, i.e.,
G(H?) = $(H)?. =

Once this is done, one can follow the proof in [4, Corollary 4.3], which depends on

Noether-Skolem Theorem, to conclude that ¢ is of the asserted form. In any event, our
proof is more straight forward and self-contained.

We thank Professor Peter Semrl for his comment, and bringing our attention to [2].
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