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numerical ranges. In particular, it is shown that for a given quadratic

operator, the rank-k numerical range, the essential numerical range, and
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of elliptical disks, and the Davis-Wielandt shell is an ellipsoid with or

without interior.
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1. Introduction

Let B(H) be the algebra of bounded linear operators acting on the Hilbert
space H. We identify B(H) with Mn if H has dimension n. The numerical
range of A ∈ B(H) is defined by

W (A) = {〈Ax, x〉 : x ∈ H, 〈x, x〉 = 1};

see [9, 10]. The numerical range is useful in studying matrices and oper-
ators. One of the basic properties of the numerical range is that W (A) is
always convex; for example, see [9]. In particular, if A ∈ M2 has eigen-
values a1 and a2, then W (A) is an elliptical disk with a1, a2 as foci and√

tr (A∗A)− |a1|2 − |a2|2 as the length of minor axis; for example, see [11].
This is known as the elliptical range theorem from which one can deduce
the convexity of the numerical range of a general operator.

Motivated by theoretical study and applications, there has been many
generalizations of the numerical range such as the k-numerical range, the q-
numerical range, the c-numerical range, the essential numerical range, and
the Davis-Wielandt shell; for example, see [2, 7, 8, 9, 10, 12, 16, 22] and
their references. Recently, researchers have studied the higher rank numer-
ical range in connection to quantum error correction; see [4, 5, 6, 13, 15]
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and Section 2. Each of these generalizations encodes certain specific infor-
mation of the operator that leads to interesting applications. To advance
the study of these generalized numerical ranges, it is useful to have concrete
descriptions of the numerical ranges of certain operators. In most cases, it
is relatively easy to solve the problem for self-adjoint or normal operators.
The task is more challenging for general operators.

A non-scalar operator A ∈ B(H) is a quadratic operator if there is a, b ∈ C
such that (A − aI)(A − bI) = 0. This class of operators include idempo-
tent operators and square-zero operators. The following result on quadratic
operators is known; e.g., see [21].

Theorem 1.1. Let A ∈ B(H) be a non-scalar quadratic operator satisfying
(A−aI)(B−bI) = 0 with a, b ∈ C. Then H has a decomposition H1⊕H1⊕H2

such that A has an operator matrix of the form[
aIr P
0 bIr

]
⊕ γIs,

where γ ∈ {a, b}, dimH1 = r, dimH2 = s, and P : H1 → H1 is a positive
semidefinite operator, i.e., 〈Px, x〉 ≥ 0 for all x ∈ H1, with the additional
condition that 〈Px, x〉 6= 0 for all nonzero x ∈ H1 if a = b. The numerical
range W (A) is an elliptical disk with foci a, b and minor axis of length ‖P‖
with all or none of the boundary points depending on whether there is a unit
vector x ∈ H1 such that ‖Px‖ = ‖P‖.

Note that in the above discussion of P , we have identified the subspaces
H1 ⊕ 0⊕ 0 and 0⊕H1 ⊕ 0 with H1.

The shapes of different kinds of generalized numerical ranges of quadratic
operators were studied by researchers. For example, the k-numerical range
of a quadratic operator was described as the union of (infinitely many)
circular disks in [3]; the essential numerical range of a quadratic operator
was described in terms of the essential norm of a related operator, and
some partial results on the c-numerical range of a quadratic operator were
obtained in [19].

In this paper, we give explicit descriptions of different kinds of general-
ized numerical ranges of quadratic operators including the rank-k numerical
range, the c-numerical range, the q-numerical range, the essential numerical
range, and the Davis-Wielandt shell; see the definitions in Sections 2–4. In
particular, we show that these generalized numerical ranges of quadratic
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operators are elliptical disks, the sum of elliptical disks, or ellipsoids with
or without the interior. Our results cover and improve those of other re-
searchers. One can readily use our results to construct the above generalized
numerical ranges analytically or numerically.

For S ⊆ C, we will use int(S), cl (S) and conv(S) to denote the interior,
the closure and the convex hull of S, respectively. For A ∈ B(H), let N(A)
denote the null space of A. Let V be a closed subspace of H and Q the
embedding of V into H. Then B = Q∗AQ is the compression of A onto
V. More generally, A has a compression B if A has an operator matrix[
B ∗
∗ ∗

]
with respect to an orthonormal basis; alternatively, there is a closed

subspace V of H and X : V → H such that X∗X = IV and X∗AX = B.
Note that, in this case, X(V) is closed and X∗AX is the compression of A
on X(V).

2. Rank-k numerical ranges and essential numerical ranges

For a positive integer k, define the rank-k numerical range of A ∈ B(H)
by

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P}.

This generalized numerical range is motivated by the study of quantum error
correction; see [4, 5, 6].

To describe some basic results of Λk(A), we need the following notation.
Let H ∈ B(H) be a self-adjoint operator. If dimH = n, denote by λ1(H) ≥
· · · ≥ λn(H) the eigenvalues of H. If H is infinite dimensional, define

λm(H) = sup{λm(X∗HX) : X∗X = Im}.

It is known (see [18]) and not hard to verify that λm(H) of an infinite
dimensional operator H can be determined as follows. Let

σe(A) = ∩{σ(A+ F ) : F ∈ B(H) has finite rank}

be the essential spectrum of A ∈ B(H), and let

λ∞(H) = supσe(H),

which also equals the supremum of the set

σ(H) \ {µ ∈ C : H − µI has a non-trivial finite dimensional null space}.
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Then S = σ(H)∩ (λ∞(H),∞) has only isolated points, and we can arrange
the elements in descending order, say, λ1 ≥ λ2 ≥ · · · counting multiplicities,
i.e., each element repeats according to the dimension of its eigenspace. If S
is infinite, then λj(H) = λj for each positive integer j. If S has m elements,
then λj(H) = λj for j = 1, . . . ,m, and λj(H) = λ∞(H) for j > m.

Let

Ωk(A) =
⋂

ξ∈[0,2π)

{
µ ∈ C : Re (eiξµ) ≤ λk

(
Re (eiξA)

)}
,

where Re (B) = (B +B∗)/2 is the real part of B. It was shown in [14] that

int(Ωk(A)) ⊆ Λk(A) ⊆ Ωk(A) = cl (Λk(A)).

In particular, Λk(A) = Ωk(A) if A ∈Mn; see also [15].
The rank-k numerical range of a quadratic operator can be an empty

set, a singleton, a line segment or an elliptical disk with all or none of its
boundary. The following theorem gives the precise description of the set
using Theorem 1.1.

Theorem 2.1. Suppose A ∈ B(H) is a quadratic operator with operator
matrix in the form described in Theorem 1.1 and k is a positive integer not
larger than dimH.

(a) If r + s < k, then Λk(A) = ∅.
(b) If r < k ≤ r + s, then Λk(A) = {γ}.
(c) Suppose k ≤ r. Then Λk(A) = E or Λk(A) = int(E), where E is the

closed elliptical disk with foci a, b and minor axis of length λk(P );
the equality Λk(A) = E holds if and only if P : H1 → H1 has a
compression diag (p1, . . . , pk) with p1 ≥ · · · ≥ pk = λk(P ).

Remark 2.2. In (c) of Theorem 2.1, it is not hard to show that another
equivalent condition for Λk(A) = E is that

P : H1 → H1 has a compression diag (λ1(P ), . . . , λk(P )),

and therefore Λ`(A) is an elliptical disk with foci a, b and minor axis of
length λ`(P ) for any ` ∈ {1, . . . , k}. Also if λk(P ) = 0, then E becomes the
line segment joining a and b, i.e., E = conv{a, b}. In this case, Λk(A) equals
conv{a, b}.

The following corollary is immediate.
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Corollary 2.3. Suppose A ∈ B(H) satisfies (A− aI)2 = 0. Then Λk(A) is
an empty set, a singleton {a}, an open circular disk or a closed circular disk
centered at a.

We need two lemmas to prove Theorem 2.1. First of all, by the discussion
after the definition of λm(H) for a self-adjoint operator H ∈ B(H), we have
the following observation.

Lemma 2.4. Suppose P is a positive semidefinite operator in B(H1) with
dim(H1) ≥ k. For any ε > 0, there exist p1, . . . , pk ∈ [0,∞) with λj(P )−ε <
pj ≤ λj(P ) for j = 1, . . . , k, such that P has a compression of the form
diag (p1, . . . , pk).

Proof. We prove by induction on k. For k = 1, the result follows from
definition. Suppose we have a (k − 1)-dimensional subspace V1 and X1 :
V1 → H1 such that X∗1X1 = IV1 and λj(P ) − ε < λj (X∗1PX1) ≤ λj(P ) for
j = 1, . . . , k − 1. Choose a k-dimensional subspace V2 and X2 : V2 → H1

such that X∗2X2 = IV2 and λk(P ) − ε < λk (X∗2PX2) ≤ λk(P ). Let V =

X1 (V1) +X2 (V2) and P̂ the compression of P on V. Then

λj(P )− ε < λj(P̂ ) ≤ λj(P ) for j = 1, . . . , k.

Therefore, the result is satisfied by taking the compression of P̂ to the k-

dimensional subspace spanned by the eigenvectors of P̂ corresponding to

λj(P̂ ),1 ≤ j ≤ k. �

Lemma 2.5. Let A ∈ B(H) be a quadratic operator having the form de-
scribed in Theorem 1.1 with the additional assumption that r =∞. Suppose
V1 is a k-dimensional subspace of H. Then there is a (4k + `)-dimensional
subspace V2 of H containing V1 with ` = min{s, k} such that the compression
of A on V2 has the form [

aI2k P ′

0 bI2k

]
⊕ γI`,

where P ′ = diag (p1, . . . , p2k) is a compression of P , with p1 ≥ · · · ≥ p2k and
pi ≤ λi(P ) for 1 ≤ i ≤ 2k.

Proof. Suppose A has the form described in Theorem 1.1, with respect to
the decomposition H = H1⊕H1⊕H2 and dimH1 = r =∞. Let K1 and K2

be k-dimensional subspaces of H1 such that K1⊕0⊕0 and 0⊕K2⊕0 contain
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the orthogonal projections of V1 on H1⊕ 0⊕ 0 and 0⊕H1⊕ 0, respectively.
Also let K3 be a `-dimensional subspace of H2, with ` = min{s, k}, such
that 0 ⊕ 0 ⊕ K3 contains the orthogonal projection of V1 on 0 ⊕ 0 ⊕ H2.
Clearly, K1 ⊕ K2 ⊕ K3 contains V1. Take a 2k-dimensional subspace K of
H1 containing K1 + K2 and V2 = K ⊕ K ⊕ K3. Then V2 also contains V1.
Let S : V2 ↪→ H be the imbedding of V2 into H. Then S∗AS has operator
matrix of the form [

aI2k X∗PX
0 bI2k

]
⊕ γI`,

where X is the imbedding of K into H1. Furthermore, we can find a unitary
operator U such that

U∗X∗PXU = diag (p1, . . . , p2k) with p1 ≥ · · · ≥ p2k.

Let T = S(U⊕U⊕I`). Then T ∗T = I4k+` and T ∗AT has the asserted form.
�

Proof of Theorem 2.1. We first consider the finite dimensional case.
Let n = dimH = 2r + s. Assume that P has eigenvalues s1 ≥ · · · ≥ sr ≥ 0.
Then A is unitarily similar to

A1 ⊕A2 ⊕ · · · ⊕Ar ⊕ γIs,

where

Aj =
[
a sj
0 b

]
, j = 1, 2, . . . , r.

We note that if a = b, then sj 6= 0. Therefore, Aj is never a scalar matrix
and Ω2(Aj) = ∅. Let E(a, b, `) denote the closed elliptical disk with foci at a
and b and minor axis of length `. It follows that E(a, b, `1) ⊆ E(a, b, `2) for
`1 < `2. It is known that Λ1(Aj) = E(a, b, sj); e.g., see [11]. For ξ ∈ R, we
have

λ1

(
Re (eiξAj)

)
= 1

2

[
Re (eiξ(a+ b)) +

√
(Re (eiξ(a− b)))2 + s2j

]
,

λ2

(
Re (eiξAj)

)
= 1

2

[
Re (eiξ(a+ b))−

√
(Re (eiξ(a− b)))2 + s2j

]
.

Hence,

λ1

(
Re (eiξA1)

)
≥ · · · ≥ λ1

(
Re (eiξAr)

)
≥ Re (eiξγ) ≥ λ2

(
Re (eiξAr)

)
≥ · · · ≥ λ2

(
Re (eiξA1)

)
.
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Then λk
(
Re (eiξA)

)
equals

λ1

(
Re (eiξAk)

)
if k ≤ r,

Re (eiξγ) if r < k ≤ r + s,

λ2

(
Re (eiξAn−k+1)

)
if r + s < k ≤ n.

Recall that µ ∈ Ωk(A) if and only if Re (eiξµ) ≤ λk
(
Re (eiξA)

)
for all

ξ ∈ [0, 2π). We have

Λk(A) = Ωk(A) =


Ω1(Ak) if k ≤ r,
{γ} if r < k ≤ r + s,

Ω2(An−k+1) = ∅ if r + s < k ≤ n .

Then the assertion holds when k > r. If k ≤ r, then

Λk(A) = Ωk(A) = Ω1(Ak) = Λ1(Ak) = E(a, b, sk).

Thus, the result holds for the finite dimensional case.

Next, suppose H is an infinite dimensional Hilbert space. If r < k, then
Ωk(A) = {γ} and hence Λk(A) = {γ}.

Suppose r ≥ k is finite or λk(P ) = 0. Then P : H1 → H1 has a compres-
sion diag (λ1(P ), . . . , λk(P )). Let

Ã = A1 ⊕ · · · ⊕Ak ∈M2k

with Aj =
[
a λj(P )
0 b

]
for j = 1, . . . , k. Notice that Ã is a compression of

A and

λk

(
Re
(
eiξA

))
= λk

(
Re
(
eiξÃ

))
for all ξ ∈ [0, 2π).

Hence,

Λk(Ã) ⊆ Λk(A) ⊆ Ωk(A) = Ωk(Ã) = Λk(Ã).

Thus, Λk(A) = Λk(Ã) so that the result holds by the finite dimensional
result.

Suppose r is infinite and λk(P ) > 0. We prove that (c) holds with E =
E(a, b, λk(P )). Let µ be an interior point of E . Then there exists ε > 0
such that µ ∈ E(a, b, λk(P )− ε). By Lemma 2.4, there exist a k-dimensional
subspace V of H and X : V → H1 satisfying X∗X = Ik and

λk(X∗PX) > λk(P )− ε.
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Let Z =
[
X 0
0 X

]
⊕ Is. Then we have Z∗AZ =

[
aIk X∗PX
0 bIk

]
⊕ γIs and

µ ∈ E(a, b, λk(P )− ε) ⊆ Λk(Z∗AZ) ⊆ Λk(A).

Conversely, suppose µ ∈ Λk(A). Then there exist a k-dimensional sub-
space V1 of H and X : V1 → H such that X∗X = IV1 and X∗AX = µIV1 .
By Lemma 2.5, there is a (4k + `)-dimensional subspace V2 containing V1

such that the compression of A on V2 has operator matrix

A′ =
[
aI2k P ′

0 bI2k

]
⊕ γI` ∈M4k+`,

where P ′ = diag (p1, . . . , p2k) is a 2k-dimensional compression of P , with
p1 ≥ · · · ≥ p2k and pi ≤ λi(P ) for 1 ≤ i ≤ 2k. By the result in the finite
dimensional case, we have

µ ∈ Λk(A′) = E(a, b, λk(P ′)) ⊆ E(a, b, λk(P )).

So, we have shown that

int(E(a, b, λk(P ))) ⊆ Λk(A) ⊆ E(a, b, λk(P )).

Also, it follows from the above argument that if Λk(A) contains a bound-
ary point of E(a, b, λk(P )), then λk(P ) = λk(P ′) = pk. In this case, P
has a k-dimensional compression diag (p1, . . . , pk) with pk = λk(P ) and
Λk(A) = E(a, b, λk(P )). Conversely, it is clear that if P has a k-dimensional
compression of the above diagonal from, Λk(A) contains all the boundary
point of E(a, b, λk(P )). The proof is complete. �

For an infinite dimensional operator A, one can extend the definition of
rank-k numerical range to Λ∞(A) defined as the set of scalars λ ∈ C such
that PAP = λP for an infinite rank orthogonal projection P on H, see
[14, 17]. Evidently, Λ∞(A) consists of those λ ∈ C for which there exists an
infinite orthonormal set {xi ∈ H : i ≥ 1} such that 〈Axi, xj〉 = δi jλ for all
i, j ≥ 1. It is shown in [14] that

Λ∞(A) =
⋂
k≥1

Λk(A) =
⋂
{W (A+ F ) : F ∈ B(H) has a finite rank}.

Recall that λ∞(H) is the supremum of the set

σ(H) \ {µ ∈ C : H − µI has a non-trivial finite dimensional null space}.
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One can extend the definition of Ωk(A) to

Ω∞(A) =
⋂
k≥1

Ωk(A).

By Theorem 5.1 in [14] (see also [1, Theorem 4]),

Ω∞(A) =
⋂
{cl (W (A+ F )) : F ∈ B(H) has a finite rank}

is the essential numerical range We(A) of A; Ω∞(A) = cl (Λ∞(A)) if and
only if Λ∞(A) is non-empty.

By Theorem 2.1, we have the following corollary, which gives a complete
description of Λ∞(A) and the essential numerical range of a quadratic op-
erator A. It turns out that each of them can be a singleton, a line segment
or an elliptical disk. As a result, we also get the description of the essential
numerical range of A ∈ B(H) obtained in [19, Theorem 2.2 and Corollary
2.3].

Corollary 2.6. Suppose A ∈ B(H) is an infinite dimensional quadratic
operator with operator matrix in the form in Theorem 1.1.

(a) If r <∞, then Λ∞(A) = {γ}.
(d) Suppose r = ∞, and E is the closed elliptical disk with foci a, b and

minor axis of length λ∞(P ). Then Λ∞(A) = E or λ∞(A) = int(E);
the equality Λ∞(A) = E holds if and only if σ(P ) ∩ (λ∞(P ),∞) is
infinite or P − λ∞(P )I has an infinite dimensional null space.

Consequently, We(A) = Ω∞(A) = cl (Λ∞(A)) is a singleton, a line segment
or a closed elliptical disk.

3. Davis-Wielandt shells and q-numerical ranges

The Davis-Wielandt shell of A is defined by

DW (A) = {(〈Ax, x〉, 〈Ax,Ax〉) : x ∈ H, 〈x, x〉 = 1};

see [7, 8, 22]. Evidently, the projection of the set DW (A) on the first
co-ordinate is W (A). So, DW (A) captures more information about the op-
erator A than W (A). For example, in the finite dimensional case, normality
of operators can be completely determined by the geometrical shape of their
Davis-Wielandt shells, namely, A ∈ Mn is normal if and only if DW (A) is
a polyhedron in C× R identified with R3.
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Suppose A ∈ B(H). It is known that if dimH ≥ 3 then DW (A) is always

convex. If A =
[
a c
0 b

]
∈M2, then one of the following holds.

(1) c = 0 and DW (A) = conv{(a, |a|2), (b, |b|2)}, which will be a single-
ton if a = b;

(2) c 6= 0 and DW (A) is an ellipsoid centered at (a+b, |a|2+|b|2+|c|2)/2,
which is a sphere if a = b.

Suppose dimH ≥ 3. The Davis-Wielandt shell of a quadratic operator
can be a line segment, an ellipsoid with interior, or just the interior of an
ellipsoid. The following theorem gives a precise description of the set.

Theorem 3.1. Suppose dimH ≥ 3 and A ∈ B(H) is a quadratic operator

with operator matrix in the form in Theorem 1.1. Let A0 =
[
a ‖P‖
0 b

]
and

E be the closed ellipsoid convDW (A0). Then DW (A) = E or int(E). The
equality DW (A) = E holds if and only if there is a unit vector x ∈ H1 such
that ‖Px‖ = ‖P‖.

We start with the following lemma.

Lemma 3.2. Suppose C =
[
a c
0 b

]
and D =

[
a d
0 b

]
with c ≥ d. Then

convDW (D) ⊆ convDW (C).

Proof. Suppose U ∈M2 is unitary and U∗DU =
[
e f
g h

]
so that (e, |e|2 +

|g|2) ∈ DW (D). Since W (D) ⊆ W (C) and trD = trC, there is a unitary

V ∈ M2 such that V ∗CV =
[
e f1

g1 h

]
. Since X ∈ M2 and Xt ∈ M2 are

always unitarily similar, we may assume that |f1| ≥ |g1|. Note that

eh− f1g1 = det(C) = det(D) = eh− gf.

So, f1g1 = fg. Also,

|f1|2 + |g1|2 − |f |2 − |g|2 = tr (C∗C)− tr (D∗D) = |c|2 − |d|2 ≥ 0

and hence |f1|2 + |g1|2 ≥ |f |2 + |g|2. Then both |f | and |g| must lie be-
tween the interval [|g1|, |f1|]. It follows that the point (e, |e|2 + |g|2) is a
convex combination of the two points in DW (C), namely, (e, |e|2 + |g1|2)
and (e, |e|2 + |f1|2). Thus, DW (D) ⊆ convDW (C). �
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Proof of Theorem 3.1. Suppose r > 0 is finite. Then A is unitarily
similar to

A1 ⊕ · · · ⊕Ar ⊕ γIs

with Aj =
[
a λj(P )
0 b

]
for j = 1, . . . , r and ‖P‖ = λ1(P ) ≥ · · · ≥ λr(P ) ≥ 0.

Note that for any two operators X and Y we have

DW (X ⊕ Y ) = conv(DW (X) ∪DW (Y )).

By Lemma 3.2, DW (Aj) ⊆ convDW (A1) = E for all j = 2, . . . , r. More-
over, we have DW (γIs) ⊆ convDW (A1) = E . Thus, DW (A) = E . Clearly,
there exists a unit vector x ∈ H1 such that ‖Px‖ = ‖P‖.

Suppose r = ∞. Without loss of generality, we may assume that γ = b.

Decompose H into Ĥ1 ⊕ Ĥ2 such that A has an operator matrix[
aIr Q
0 bIr+s

]
with Q =

[
P 0

]
.

Suppose (µ, ν) = (〈Ax, x〉, ‖Ax‖2) ∈ DW (A). Write x = u1 + v1 and Ax =

u2 + v2 for some u1, u2 ∈ Ĥ1 and v1, v2 ∈ Ĥ2. Let S be the subspace
spanned by {u1, u2, v1, v2}. Since Auj = auj and A∗vj = b̄vj for j = 1, 2,
the compression of A onto S has the form

Ã =
[
aIp Q′

0 bIq

]
∈Mp+q

so that 〈Ax, x〉 = 〈Ãx, x〉 and ‖Ax‖ = ‖Ãx‖, where p and q are the dimen-
sion of subspace spanned by {u1, u2} and {v1, v2} respectively. Notice that

‖Q′‖ ≤ ‖Q‖ = ‖P‖. Hence, (µ, ν) ∈ DW (Ã) ⊆ convDW (A0).

On the other hand, for any ε > 0, there are unit vectors x ∈ Ĥ2 and

y ∈ Ĥ1 such that Qx = qy with q > ‖P‖ − ε. Using an orthonormal basis

with y⊕0, 0⊕x ∈ Ĥ1⊕Ĥ2 as the first two vectors, we see that the operator
matrix of A has the form[

A11 A12

0 A22

]
with A11 =

[
a q
0 b

]
.

Thus, DW (A11) ⊆ DW (A). By convexity, convDW (A11) ⊆ DW (A). Let-
ting ε→ 0, we see that DW (A) contains the interior of DW (A0). It is easy
to determine the boundary behavior of DW (A). �
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For q ∈ [0, 1], the q-numerical range of A is

Wq(A) = {〈Ax, y〉 : x, y ∈ H, 〈x, x〉 = 〈y, y〉 = 1, 〈x, y〉 = q} .

There is a close connection between Wq(A) and DW (A), namely,

Wq(A) =
{
qµ+

√
1− q2ν : (µ, |µ|2 + |ν|2) ∈ DW (A)

}
;

see [12, 20]. By Theorem 3.1, we have the following description of Wq(A)
for a quadratic operator A ∈ B(H). In particular, Wq(A) will always be an
open or closed elliptical disk, which may degenerate to a line segment or a
point.

Corollary 3.3. Use the notation in Theorem 3.1. For any q ∈ [0, 1], either
Wq(A) = Wq(A0) or Wq(A) = int (Wq(A0)); the equality Wq(A) = Wq(A0)
holds if and only if there is a unit vector x ∈ H1 such that ‖Px‖ = ‖P‖.

4. c-numerical ranges

For c = (c1, . . . , ck) with c1 ≥ · · · ≥ ck and k ≤ dimH, the c-numerical
range of A is

Wc(A) =


k∑
j=1

cj〈Axj , xj〉 : {x1, . . . , xk} ⊆ H is an orthonormal set

 .

If (c1, . . . , ck) = (1, . . . , 1), then Wc(A) reduces to the k-numerical range;
see [9].

Suppose A =
[
a d
0 b

]
∈M2 and c = (c1, c2). Then

Wc(A) = (c1 − c2)W (A) + c2trA = W ((c1 − c2)A+ (c2trA)I2)

is the elliptical disk with foci ac1 + bc2 and ac2 + bc1, and minor axis of
length |(c1 − c2)d|.

For a self-adjoint operator H ∈ B(H), we have

cl (Wc(H)) = [mc(H),Mc(H)],

where

mc(H) = inf

−∑̀
j=1

cjλj(−H) +
k−∑̀
j=1

ck−j+1λj(H) : 0 ≤ ` ≤ k


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and

Mc(H) = sup

∑̀
j=1

cjλj(H)−
k−∑̀
j=1

ck−j+1λj(−H) : 0 ≤ ` ≤ k

 .

For a general operator A ∈ B(H), we have

(1) cl (Wc(A)) =
⋂

t∈[0,2π)

{
µ ∈ C : Re

(
eitµ

)
≤Mc

(
Re (eitA)

)}
.

For a quadratic operator A ∈ B(H), it is easy to determine λm
(
Re (eitA)

)
.

Thus, it is not hard to determine Wc(A) using (1). It turns out that
cl (Wc(A)) can always be expressed as the sum of a finite number of el-
liptical disks, namely,

cl (Wc(A)) = W (A1) + · · ·+W (At) + d

for some constant d ∈ C and A1, . . . , At ∈M2 with t ≤ k.
To simplify the statement of our results, we will impose the following

assumption on the vector c = (c1, . . . , ck):

(2)
c1 ≥ · · · ≥ ck with cp+1 = 0, where

dimH =∞ > k = 2p or dimH = k ∈ {2p, 2p+ 1}.

Note that it is easy to reduce the general case to the study of the special
vector c with assumption (2). In the infinite dimensional case, this can
be achieved by adding zeros to the vector c = (c1, . . . , ck). In the finite
dimensional case, we can first assume that k = dimH by adding zeros to
the vector c, and then replace c with ĉ = c−cp+1(1, . . . , 1). One can then use
the fact that Wc(A) = Wĉ(A) + cp+1trA to determine the shape of Wc(A).
Note also that the advantage of this assumption on c is that the supremum
in the definition of Mc(H) is always attained at ` = p.

Theorem 4.1. Let A ∈ B(H) be a quadratic operator with operator matrix
in the form described in Theorem 1.1. Suppose c = (c1, . . . , ck) satisfies (2)
and t = min{p, r}. For j = 1, . . . , t, let

Bj = (cj − ck−j+1)
[
a λj(P )
0 b

]
+ ck−j+1(a+ b)I2.
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Then Wc(A) = E or int(E), where

E = W (B1) + · · ·+W (Bt) + γ
k−t∑
j=t+1

cj .

The equality Wc(A) = E holds if and only if P : H1 → H1 has a compression
diag (λ1(P ), . . . , λt(P )).

Proof. Suppose dimH = n is finite. So we have k = n and r ≤ p. Notice
that A is unitarily similar to

A1 ⊕ · · · ⊕Ar ⊕ γIs,

where Aj =
[
a λj(P )
0 b

]
for j = 1, . . . , r. By the argument in the proof of

Theorem 2.1, we have

λj

(
Re (eiξA)

)
=



λ1

(
Re (eiξAj)

)
if j ≤ r,

Re (eiξγ) if r < j ≤ r + s,

λ2

(
Re (eiξAn−j+1)

)
if r + s < j ≤ n.

Under assumption (2) and k = n, we have

Mc

(
Re (eiξA)

)
=

n∑
j=1

cjλj

(
Re (eiξA)

)
.

On the other hand,

Re (eiξγ)
n−r∑
j=r+1

cj =
n−r∑
j=r+1

cjλj

(
Re (eiξA)

)
and

r∑
j=1

M(cj ,cn−j+1)

(
Re (eiξAj)

)
=

r∑
j=1

[
cjλ1

(
Re (eiξAj)

)
+ cn−j+1λ2

(
Re (eiξAj)

) ]
=

r∑
j=1

cjλj

(
Re (eiξA)

)
+

n∑
j=n−r+1

cjλj

(
Re (eiξA)

)
.
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Thus, Mc

(
Re (eiξA)

)
equals

r∑
j=1

M(cj ,cn−j+1)

(
Re (eiξAj)

)
+ Re (eiξγ)

n−r∑
j=r+1

cj .

By (1) and the above equation, the two compact convex sets

Wc(A) and W(c1,cn)(A1) + · · ·+W(cr,cn−r+1)(Ar) + γ
n−r∑
j=r+1

cj

always share the same support line in each direction. Thus, the two sets are
the same. Since W(cj ,cn−r+j)(Aj) = W (Bj) for j = 1, . . . , r, it follows that

Wc(A) = W (B1) + · · ·+W (Br) + γ
n−r∑
j=r+1

cj .

Next, suppose dimH is infinite. Suppose r is finite or λp(P ) = 0. Let t =
min{p, r}. Then P : H1 → H1 has a compression diag (λ1(P ), . . . , λt(P )).
Take

Ã = A1 ⊕ · · · ⊕At ⊕ γIk−2t ∈Mk

with Aj =
[
a λj(P )
0 b

]
for j = 1, . . . , t. Then we have λm(Re (eiξA)) =

λm(Re (eiξÃ)) for each ξ ∈ [0, 2π) and m = 1, . . . , p. Thus, Mc(Re (eiξA)) =

Mc(Re (eiξÃ)) for all ξ ∈ [0, 2π) and so Wc(A) = Wc(Ã). The result follows
from the finite dimensional case.

Suppose r is infinite and λp(P ) > 0. For µ1 ≥ · · · ≥ µp > 0, let

E(µ1, . . . , µp) = W(c1,ck)

[
a µ1

0 b

]
+ · · ·+W(cp,ck−p+1)

[
a µp
0 b

]
.

Notice that E(λ1(P ), · · ·λp(P )) = W (B1) + · · ·+W (Bp).
By Lemma 2.4, there exist a k-dimensional subspace V of H and X : V →

H1 satisfying X∗X = Ik and X∗PX = diag (λ1, . . . , λp) with λj(P ) − ε <

λj ≤ λj(P ) for j = 1, . . . , p. Let Z =
[
X 0
0 X

]
⊕ Is. Then Z∗AZ is unitary

similar to [
a λ1

0 b

]
⊕ · · · ⊕

[
a λp
0 b

]
⊕ γIs.
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Note that Wc(B) ⊆ Wc(A) if B is a compression of A. Applying the result
for finite r = p, we have

E(λ1, . . . , λp) = Wc(Z∗AZ) ⊆Wc(A).

As λj → λj(P ) and hence
[
a λj
0 b

]
→
[
a λj(P )
0 b

]
when ε→ 0, we see that

all the interior points of E(λ1(P ), . . . , λp(P )) lie in Wc(A).
Conversely, suppose µ ∈ Wc(A). Then there exist a k-dimensional sub-

space V1 of H and X : V1 → H such that X∗X = Ik and µ ∈ Wc(X∗AX).
By Lemma 2.5, there are a (4k+ `)-dimensional subspace V2, containing V1

and Y : V2 → H such that Y ∗Y = IV2 and Y ∗AY has operator matrix[
aI2k P ′

0 bI2k

]
⊕ γI` ∈M4k+`,

where of P ′ = diag (p1, . . . , p2k) is a 2k-dimensional compression of P , with
p1 ≥ · · · ≥ p2k and pi ≤ λi(P ) for 1 ≤ i ≤ 2k. Since X∗AX is a compression
of Y ∗AY , we have µ ∈Wc(X∗AX) ⊆Wc(Y ∗AY ). By the finite dimensional
result, we have

µ ∈Wc(Y ∗AY ) = E(λ1(P ′), . . . , λp(P ′)) ⊆ E(λ1(P ), . . . , λp(P )).

So, we have shown that

int(E(λ1(P ), . . . , λp(P ))) ⊆Wc(A) ⊆ E(λ1(P ), . . . , λp(P )).

Also, it follows from the above argument that if Wc(A) contains a boundary
point of E(λ1(P ), . . . , λp(P )), then λi(P ) = λi(P ′) = pi for all i = 1, . . . , p.
Then P has a k-dimensional compression diag (λ1(P ), . . . , λp(P )). Con-
versely, it is clear that if P has a k-dimensional compression of the above di-
agonal from, Λk(A) contains all the boundary point of E(λ1(P ), . . . , λp(P )).
The proof is complete. �

In Theorem 4.1, if λm(P ) = 0 for some m ≤ t, then W (Bm)+ · · ·+W (Bt)
becomes a line segment joining

a

t∑
j=m

cj + b

k−m+1∑
j=k−t+1

cj and b

t∑
j=m

cj + a

k−m+1∑
j=k−t+1

cj .

Thus, Wc(A) is a sum of m− 1 nondegenerate elliptical disks with one line
segment. Therefore, we have the following corollary.
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Corollary 4.2. Let c = (c1, . . . , ck) and A ∈ B(H) satisfy the hypotheses of
Theorem 4.1.

(a) If σ(A) is a singleton, i.e., a = b, then Wc(A) is a circular disk with

radius
∑min{p,r}

j=1 (cj − ck−r+j)λj(P ).

(b) If σ(A) = {a, b} has two distinct elements, then Wc(A) is the sum
of elliptical disks such that all boundary points are differentiable. If
λm(P ) = 0 for some m ≤ min{p, r}, then there are exactly two flat
portions on the boundary. Otherwise, there is no flat portion on the
boundary.

Our results on the c-numerical ranges cover and refine those in [19, Section
2.3]. Specializing the results to the k-numerical range, we have the following
corollary covering the results in [3], where the authors proved that Wk(A) is
a union of infinitely many circular disks. Here, we show that Wk(A) is the
sum of at most k elliptical disks with at most one point.

Corollary 4.3. Suppose A is a quadratic operator with operator matrix in
the form described in Theorem 1.1. Let t = min{k, r} and

Aj =
[
a λj(P )
0 b

]
j = 1, . . . , t.

(a) If k ≤ r + s, then Wk(A) = E or Wk(A) = int(E), where

E = W (A1) + · · ·+W (At) + (k − t)γ.

The equality Wk(A) = E holds if and only if P : H1 → H1 has a
compression diag (λ1(P ), . . . , λt(P )).

(b) If k > r + s, then Wk(A) equals

W (A1) + · · ·+W (A2r+s−k) + (k − r − s)(a+ b) + sγ.
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