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Linear preserver problems is an active research area in matrix and operator theory.
These problems involve certain linear operators on spaces of matrices or operators.
We give a general introduction to the subject in this article. In the first three sections,
we discuss motivation, results, and problems. In the last three sections, we describe
some techniques, outline a few proofs, and discuss some exceptional results.

1. EXAMPLES AND TYPICAL PROBLEMS. Let Mm,n be the set of m × n com-
plex matrices, and let Mn = Mn,n . Suppose that M, N ∈ Mn satisfy det(M N ) = 1.
Then the mapping φ : Mn → Mn given by

A �→ M AN (1)

is linear and satisfies

det(φ(A)) = det(A) for all A ∈ Mn. (2)

A linear operator φ satisfying (2) is called a linear preserver of the determinant func-
tion or simply a determinant preserver. Since det(A) = det(At), it follows that if
det(M N ) = 1, then the linear operator given by

A �→ M At N (3)

also preserves the determinant. Frobenius [20] proved the following somewhat surpris-
ing result.

Theorem 1.1. Every determinant preserver has the form (1) or (3), where M, N ∈ Mn

satisfy det(M N ) = 1.

Note that Mn has dimension n2. Thus, every linear map on Mn can be identified
with an n2 × n2 matrix. By Theorem 1.1, if φ is a determinant preserver, then φ is
determined by two matrices M, N ∈ Mn , possibly followed by transposition.

We say that the linear preserver problem for determinants has been solved once a
complete description of all linear operators φ that preserve determinants is given, as in
Theorem 1.1.

We turn to another example of a linear preserver problem. Dieudonné [15] proved
the following interesting result.

Theorem 1.2. An invertible linear operator φ on Mn mapping the set of singular ma-
trices into itself has the form (1) or (3) for some M, N ∈ Mn with det(M N ) �= 0.

Dieudonné’s result is valid over any field. We discuss his method in Section 4.
In the study of geometry on matrix spaces, Hua [30] studied coherent matrix pairs,

i.e., a pair of matrices whose difference has rank one. He proved the following.

Theorem 1.3. An invertible linear operator φ on Mn mapping coherent pairs to co-
herent pairs has the form (1) or (3) for some invertible matrices M, N ∈ Mn.
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These examples illustrate three typical linear preserver problems. To describe them
in a general framework, let V be a space of matrices over the field F. In particular,
denote by Mm,n(F) (respectively, Mn(F)) the linear spaces of m × n (respectively, n ×
n) matrices over F. We consider the following three types of problems.

Problem A Given a (scalar-valued, vector-valued, or set-valued) function F on V,
study the linear preservers of F , i.e., those linear operators on V satisfying F(φ(A)) =
F(A) for all A ∈ V.

Problem B Given a subset S of V, study the linear preservers of S, i.e., those linear op-
erators on V satisfying φ(S) ⊆ S. Sometimes one considers linear operators mapping
the set S “onto” itself when this assumption arises naturally or is implied implicitly in
the problem, or when the “into” problem does not have a nice solution. We say that φ
strongly preserves S if φ(S) = S.

Problem C Given a relation ∼ on V, study the linear preservers of ∼, i.e., those linear
operators φ on V satisfying

φ(A) ∼ φ(B) whenever A ∼ B.

For example, ∼ could be commutativity; one would then study those linear operators
φ satisfying

φ(A)φ(B) = φ(B)φ(A) whenever AB = B A.

In some cases, one considers the problem of strongly preserving a relation, i.e.,

φ(A) ∼ φ(B) if and only if A ∼ B.

2. THE ATTRACTION OF LINEAR PRESERVER PROBLEMS. There has
been much research activity on linear preserver problems, especially in the last few
decades. While there are many interesting results, there are still many open questions.
Here are some reasons why the area is attractive.

The formulation of linear preserver problems is simple and natural. The answer is
often very elegant. In addition to the theorems in Section 1, we present a few more
results to illustrate these points.

Theorem 2.1. A linear operator φ on Mn maps the set of invertible matrices into itself
if and only if it has the form (1) or (3) for some invertible M, N ∈ Mn.

Theorem 2.2. Let F(A) denote the set of eigenvalues of A ∈ Mn. A linear operator
φ on Mn preserves F if and only if it has the form (1) or (3) for some M, N ∈ Mn

satisfying M = N−1.

These two theorems were proved by Marcus and Purves [54] for matrices over any
algebraically closed field. We discuss results on other fields in Section 3.

Hiai [25] proved the following.

Theorem 2.3. A linear operator φ on Mn preserves the relation of similarity if and
only if there exist a, b ∈ C and an invertible S ∈ Mn such that φ is of the form

A �→ aS−1 AS + b(tr A)I or A �→ aS−1 At S + b(tr A)I, (4)
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or there exists a fixed B ∈ Mn such that φ is of the form

A �→ (tr A)B. (5)

We call transformations of the form (1), (3), or (4) standard transformations. The
image space of a transformation of the form (5) has dimension 1, and some of the
transformations of the form (4) may be singular. From these examples, one sees that
even if the admissible preservers do not consist entirely of standard transformations,
there may not be too many exceptional preservers, and the final answer may still be
quite elegant. The process of searching for linear preservers often helps researchers to
understand better the matrix invariants, functions, sets, or relations under considera-
tion. This is a nice by-product of studying linear preserver problems.

Applied problems can also lead one to study linear preservers. In elementary matrix
and operator theory, one needs to study the properties of a given linear operator. In
applications, one often has to construct or search for linear operators with some special
properties. For example, in the matrix model in systems theory, what are the linear
operators on a matrix space that preserve controllable systems or observable systems?
Knowing the answer allows one to transform a complex system to a simpler system
by linear maps that do not affect the nature of the system; see [21] and its references.
In the matrix model of a quantum system, the entropy is related to the determinant
of the matrix. Again, one may want to find linear operators that transform systems
without affecting their entropy. This naturally leads to the study of linear preservers of
determinants.

In addition to numerous matrix or operator invariants that can be studied, the tech-
niques one uses can range from elementary algebraic and basic geometric techniques
to deep theory in Lie groups and Lie algebras, completely positive maps, projective
or differential geometry, multilinear methods, model theoretic algebra, etc. Because of
this, the study of linear preserver problems often leads to interaction of linear algebra
with other subjects. Thus one can focus on a single question, or one could use linear
preserver results to try to develop general techniques for application to other questions.
We elaborate these two directions in the next two sections.

3. SPECIFIC LINEAR PRESERVER PROBLEMS. In this section we describe
several active linear preserver problems not yet completely solved. In each case, we
highlight some results, cite some history, and mention the current status of the problem.
We try not to repeat the material in the survey [58], but it is useful for background.
We include some recent topics and developments without making the discussion too
technical. The following discussion reinforces our earlier comments that it is easy to
generate linear preserver problems (from theory or applications); it is also common to
refine known results by weakening the assumptions and to extend existing results to
other matrix spaces or algebras.

3.1. Rank and inertia preservers.

Theorem 3.1. A linear operator φ on Mm,n(F) satisfies

rank(φ(A)) = rank(A) for all A ∈ Mm,n(F)

if and only if there exist invertible matrices M ∈ Mm(F) and N ∈ Mn(F) such that

(i) φ satisfies (1), or (ii) m = n and φ satisfies (3).
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A linear operator on Mm,n(F) is a rank k preserver, where 1 ≤ k ≤ min{m, n}, if it
maps the set of rank k matrices into itself. For algebraically closed fields of character-
istic 0, Theorem 3.1 has the following refinement; see [3].

Theorem 3.2. Let 1 ≤ k ≤ min{m, n}, and let F be an algebraically closed field of
characteristic 0. A linear operator φ on Mm,n(F) is a rank k preserver if and only if
there exist invertible matrices M and N such that

(i) φ satisfies (1), or (ii) m = n and φ satisfies (3).

Current work is proceeding on rank k preservers when the field is arbitrary. There
are also studies of rank k preservers on symmetric matrices, skew-symmetric matrices,
or complex Hermitian matrices.

For real symmetric matrices or complex Hermitian matrices, one can refine the
concept of rank to inertia, i.e., the number of positive and negative eigenvalues. There
has been much interest in the preservers of a fixed inertia class. Denote by G(r, s, t)
the class of complex Hermitian or real symmetric matrices with r positive, s negative,
and t zero eigenvalues. The following result is known; see [58, Chapter 3].

Theorem 3.3. Except for the cases rs = 0 or r = s, a linear preserver of G(r, s, t)
must have the form (1) or (3) with M = N ∗ for some invertible M.

There are many nonstandard preservers of G(n, 0, 0), but the collection of all such
preservers is not known. We discuss this in Section 5.

For the balanced inertia classes G(r, r, 0), r > 1, the preservers are all of the
form (1) or (3) with M = ±N ∗ and N invertible [50]. The preservers of G(r, r, t)
are fully known only if n ≥ 5r [49].

Other examples of rank preserver problems include (a) linear preservers of matrices
of rank ≤ k for some fixed k < n, (b) the preservers of the set of rank k tensors or rank
k elements in a given symmetry class of tensors; see [58, Chapter 2].

3.2. Functions of eigenvalues, singular values, and entries. Let φ be a linear oper-
ator on square matrices. If φ has the form (4) with (a, b) = (1, 0), then φ(A) and A
have the same eigenvalues. By Theorem 2.2, the converse is also valid. It is interesting
to study linear preservers of a certain function of eigenvalues and see whether they are
of this form or close to this form. The kth elementary symmetric function and the kth
completely symmetric function of n ≥ k numbers µ1, . . . , µn are

∑
1≤i1<···<ik≤n

k∏
j=1

µi j and
∑

1≤i1≤···≤ik≤n

k∏
j=1

µi j ,

respectively. When k = 1, the two concepts coincide. The study of preservers of the
elementary and completely symmetric functions of the eigenvalues is essentially com-
plete over algebraically closed fields. Note that the kth elementary symmetric function
is just a coefficient of the characteristic polynomial of A up to a ±1 factor. We have
the following result; see [1] and [58, Sec. 4.1].

Theorem 3.4. Suppose n ≥ k ≥ 3. The preservers of the kth symmetric (or com-
pletely) symmetric function of eigenvalues on Mn have the form (4) with b = 0 and
some a ∈ F satisfying ak = 1.
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The first elementary (completely) symmetric function is just the trace of a matrix,
and many linear maps preserve the trace function. The preservers of the second ele-
mentary (completely) symmetric function include many non-standard maps; see [59]
and [31]. These functions are polynomial functions in the entries of the matrix; pre-
server problems of such functions are related to the study of algebraic sets, see [58,
Chapter 4] and Section 3.3.

The singular values of a real or complex m × n matrix A are the nonnegative square
roots of the eigenvalues of the positive semi-definite matrix A∗ A. Unitarily invariant
norms are those norms ‖ · ‖ that satisfy ‖A‖ = ‖UAV‖ for all unitary matrices U and
V . In fact, every unitarily invariant norm ‖ · ‖ on m × n matrices corresponds to a
norm | · | on Rm such that ‖A‖ = |s(A)|, where s(A) denotes the vector of singular
values of A. For example, consider the 	p norms

	p(x) =
{(∑m

j=1 |x j |p
)1/p

if 1 ≤ p < ∞,

max{|x j | : 1 ≤ j ≤ m} if p = ∞,

of x = (x1, . . . , xm)
t ∈ Rm . The spectral norm of A is the l∞ norm of s(A), the Frobe-

nius norm of A is the l2 norm of s(A), and the trace norm of A is the l1 norm of s(A).
Let φ be a linear operator on real or complex m × n matrices. If φ has the form (1)
or (3) for some unitary matrices M and N , then φ(A) and A have the same singular
values, and hence ‖φ(A)‖ = ‖A‖ for any unitarily invariant norm ‖ · ‖.

An interesting problem is to study linear preservers of a certain function of singular
values and see whether they are of the standard form. Early results include the study of
spectral norm preservers by Kadison [35], and preservers of some symmetric functions
on singular values by Marcus and Gordon [52]. The following general results have
been obtained in [43] and [18].

Theorem 3.5. Let G0 be the group of linear operators on Mm,n of the form

(i) A �→ U AV, or (ii) A �→ U At V if m = n,

for some unitary matrices U ∈ Mm and V ∈ Mn. Suppose G is a compact group of
linear operators on Mm,n containing G0. Then G is either G0 or the group of unitary
operators, i.e., those linear operators preserving the usual inner product (A, B) =
tr(AB∗) on Mm,n. Consequently, if the linear preservers of a function of singular values
on Mm,n form a compact group, then the group is either G0 or the group of unitary
operators on Mm,n.

Using this theorem, one can solve efficiently many linear preserver problems in-
volving functions of singular values. For example, it is known that the set of linear
preservers of a norm is a compact group. By Theorem 3.5, the group of linear pre-
servers of a unitarily invariant norm on m × n complex matrices is either G0 or the
group of unitary operators on the matrix space. Clearly, the latter case can happen only
when the norm is a multiple of the Frobenius norm ‖A‖ ≡ {tr(AA∗)}1/2 = 	2(s(A)).

For real matrices, we have the following result; see [43] and [18].

Theorem 3.6. Let G0 be the group of linear operators on Mm,n(R) of the form

(i) A �→ U AV, or (ii) A �→ U At V if m = n,

for some orthogonal matrices U ∈ Mm(R) and V ∈ Mn(R). Suppose G is a compact
group of linear operators on Mm,n(R) containing G0. Then one of the following holds:
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(a) G = G0.
(b) G is the group of orthogonal operators on Mm,n(R).
(c) m = n = 4, and G is generated by G0 and the operator ψ defined by

ψ(A) = (A + B1 AC1 + B2 AC2 + B3 AC3)/2

with

B1 =



0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , C1 =




0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0


 ,

B2 =



0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , C2 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 ,

B3 =



0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , C3 =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


 .

Consequently, if the linear preservers of a function of singular values on Mm,n(R) form
a compact group, then the group is given by either (a), (b), or (c).

As in the complex case, one can use Theorem 3.6 to solve linear preserver problems
involving functions of singular values on Mm,n(R). Here is an example of a group of
preservers satisfying Theorem 3.6 (c): if G is the group of linear preservers of the Ky
Fan 2−norm on 4 × 4 matrices (the sum of the two largest singular values of A), then
G is the group satisfying Theorem 3.6 (c); see [32] and [43].

3.3. Linear preservers of matrix groups and subsets. An algebraic set in Mn(F) is
the zero set of a collection of polynomials in the n2 entries. An example of an alge-
braic set is the collection of all singular matrices, the zero set of the polynomial det(X).
Other examples of algebraic sets are: the set of singular matrices, the set of matrices
with rank at most k, the special linear group, the isometry groups of a given quadratic
form, the nilpotent matrices, and the singular matrices with at least k zero eigenval-
ues. The following examples are not algebraic sets: the set of invertible matrices, the
complex unitary group, the stable matrices, and the controllable matrices.

The linear preservers of the complex unitary group U (n,C), which is not an alge-
braic set, were determined in [51].

Theorem 3.7. Linear preservers of U (n,C) have the form (1) or (3) for some unitary
M and N.

When we consider algebraic groups and algebraic sets, we prefer problems over an
algebraically closed field, because the eigenvalues are accessible. There is a method
(see [17]) for reducing some preserver problems over a general field (or even a ring)
to questions over an algebraically closed field. For example, for the field of rational
numbers Q, consider the preservers of

SLn(Q) = {A ∈ Mn(Q) : det(A) = 1}.
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Any linear preserver of SLn(Q) naturally extends to a linear preserver of SLn(C) =
{A ∈ Mn : det(A) = 1}. The preservers of SLn(C) are known and all have standard
form; see Theorem 2.1. Then we restrict to SLn(Q) and see which ones preserve
SLn(Q). The work of Dixon [17] completed much of the investigation for algebraic
groups of Lie type over fields of characteristic zero. For other algebraic sets, we know,
for example, the preservers of the nilpotent matrices [9], the singular matrices [15],
the matrices with rank ≤ k, [3], and matrices with at least k zero eigenvalues [40].

A matrix is D-stable if all of its eigenvalues lie in a given region D in the complex
plane. Usually, people consider D to be the open left half plane or the open unit disk.
Special cases of this problems were studied in [34] and [39]. The general result was
obtained in [24, Corollary 3.4]. One may consider a more general problem: Let D be a
region in the complex plane, and let S be the set of all n × n matrices that have exactly
k eigenvalues in D. If D is closed and has more than n points, then the preservers of S
are all standard. Without these assumptions on D it is possible to construct exceptions,
and the preservers of S have not yet been characterized when D is arbitrary.

3.4. Linear preservers of relations. Linear preservers of commutativity were stud-
ied in [63], [59], and [36]. The preservers are standard for n > 2, but Watkins noted
that there are exceptional maps if n = 2. The problem for n > 2 used the Fundamental
Theorem of Projective Geometry (see Section 4.4). Kunicki [36] worked on the case
n = 2. Notice that commuting pairs form an algebraic set in Mn(F)× Mn(F).

Researchers have studied linear preservers of similarity, orthogonal similarity, uni-
tary similarity, t-congruence, ∗-congruence, and relations arising in systems theory;
see [28], [26], [38], [41], [21]. Most of the these results were obtained by treating
the set of matrices O(A) = {X : X ∼ A} as a differentiable manifold, and using dif-
ferential geometry techniques. Furthermore, the authors of [28] pointed out that a
linear map φ preserves ∼ if for each matrix A there is another matrix Ã such that
φ(O(A)) ⊆ O( Ã). A challenging problem is to consider a given A and determine all
Ã such that there exists a linear map φ satisfying φ(O(A)) ⊆ O( Ã), and characterize
those linear maps if they exist. Such problems have been considered for the unitary
(real orthogonal) equivalence orbit

O(A) = {U AV : U, V unitary }

for a (real) rectangular matrix A, and for the unitary similarity orbit

O(A) = {U ∗ AU : U unitary }

for a square matrix A; see [45] and [46]. In both cases, the matrix Ã and A must be
closely related. For the unitary equivalence orbit, there exists a linear map φ such that
φ(O(A)) = O( Ã) for a pair of matrices A, Ã ∈ Mn if and only if Ã has the form
µU AV for some scalar µ and unitary U and V ; the mapping φ has the form (1.1)
or (1.3), where M and N are multiples of unitary matrices. For the unitary similarity or-
bit, there exists a linear map φ such that φ(O(A)) = O( Ã) if and only if Ã − (tr Ã)I/n
has the form µU ∗(A − (tr A)I/n)U for some unitary U and scalar µ; and the restric-
tion of the mapping φ on trace zero matrices has the form (1.1) or (1.3), where M and
N are multiple of unitary matrices satisfying M N = µI , and φ(I ) = (tr Ã)I/(tr A) if
tr A �= 0.

We do not know how to characterize the linear maps that send one inertia class
of Hermitian matrices to another. Clearly, if φ is of the form A �→ −S AS∗ or A �→
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−S At S∗ for some invertible S, then φ is invertible and maps G(r, s, t) to G(s, r, t),
where G(r, s, t) is defined in Section 3.1. Are there other invertible linear maps that
send each inertia class to another one? This problem is far from solved.

3.5. Numerical ranges and norms. The numerical range of an n × n matrix A is

W (A) = {〈Ax, x〉 : x ∈ C, ‖x‖ = 1}.
It is known (see [58, Chapter 6]) that linear preservers of the numerical range have
the form A �→ U ∗ AU or A �→ U ∗ AtU for some unitary matrix U . These are all
C∗-isomorphisms or C∗-anti-isomorphisms.

Motivated by theory as well as applications, researchers have studied generalized
numerical ranges on Hilbert spaces, Banach spaces, triangular algebras, and symmetry
classes of tensors, and the corresponding linear preservers; see [27, Chapter1], [42],
[14], [47], and references therein. In most cases, one can show that φ is of the stan-
dard form (1) and (3) for some unitary M and N such that M N is a scalar matrix.
Nonetheless, many techniques have been developed to derive the results.

A related subject is the study of linear preservers of the numerical radius

r(A) = max{|z| : z ∈ W (A)},
and preservers of the generalized numerical radii (which is the maximum norm of
scalars or vectors in the corresponding generalized numerical ranges). In most cases,
numerical radius preservers are just unit multiples of the corresponding numerical
range preservers, but the proofs are usually much more involved. It is also worth noting
that numerical range preservers are related to norms or semi-norms on square matrices
that are invariant under unitary similarity or unitary equivalence; see [23] and [37].

4. GENERAL TECHNIQUES AND SAMPLE PROOFS. In this section, we men-
tion some methods and ideas that have been successful in solving linear preserver
problems. We give sketches of proofs of some results to illustrate the techniques.

4.1. Elementary Linear Algebra and Tensor Product. Basic matrix and operator
theoretic techniques can be used. For example, Mn(F) is an n2−dimensional linear
space over F. Denote by B = {E11, E12, . . . , Enn} the standard basis for Mn(F). Then
every matrix A can be regarded as a vector in Fr with r = n2 and every linear operator
on Mn(F) can be regarded as a matrix in Mr (F) with respect to B. One can check that
a linear operator φ has the standard form (1) for some M, N ∈ Mn if and only if the
matrix representation of φ is

M ⊗ N t = (
mi j N t

)
.

Therefore, one can try to show that the matrix representation of a certain linear pre-
server φ has a matrix form M ⊗ N t in order to conclude that φ has the standard
form (1); similarly, if one can show that the modified transformation A �→ φ(At)

has the matrix representation M ⊗ N t then φ has the standard form (3). Early pa-
pers such as [51] and [53] used this method to find the preservers of the complex
unitary group (Theorem 3.7) and the set of complex rank one matrices (Theorem 3.2),
respectively.

4.2. Reduction and Extreme Points Techniques. Once one has basic linear pre-
server results in hand, one can try to reduce new linear preserver problems to the

598 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 108



known ones, and use the existing results. To illustrate this technique, we give the sketch
of the following result.

Theorem 4.1. A linear operator on Mn preserves the spectral norm ‖ · ‖ if and only
if it has the form

A �→ U AV or A �→ U At V

for some unitary matrices U, V ∈ Mn.

Since the set of extreme points of the unit ball of the spectral norm in Mn is the
set of unitary matrices, φ preserves the spectral norm if and only if φ maps the set of
unitary matrices onto itself. The result follows form Theorem 3.7.

Similarly, to determine the structure of linear operators φ on Mn preserving the trace
norm, one can use the fact that the set of extreme points of the unit ball of the trace
norm in Mn is the set of rank one matrices with spectral norm equal to one. Hence,
if φ preserves the spectral norm, then φ maps the set of rank one matrices into itself.
Theorem 3.2 ensures that φ has the standard form (1) or (3) for M, N ∈ Mn. It is then
easy to show that M and N can be taken to be unitary.

The extreme point technique is commonly used in studying linear operators preserv-
ing norms on matrices. For other problems, one may use other reduction techniques.
For example, denote by Ek(A) the kth elementary symmetric function of the eigenval-
ues of A ∈ Mn(F) for an algebraically closed field F. For k ≥ 4, a matrix A ∈ Mn(F)
has rank one if and only if Ek(x A + B) is a polynomial in x with degree at most one
for all B ∈ Mn(F). Hence, if φ preserves Ek on Mn(F), then φ maps the set of rank one
matrices into itself. Again, Theorem 3.2 ensures that φ has the standard form (1) or (3)
for M, N ∈ Mn . It is then easy to show that if k < n then M and N satisfy M N = µI
for some µ ∈ F with µk = 1.

Another common reduction method is to show that a given linear preserver on
Mn(F) is nonsingular and maps the set of nilpotent matrices into itself, and then apply
the result on nilpotent preservers [9]. We refer the readers to the papers [39], [40],
and [34] for more illustrations of this reduction.

4.3. Duality and Group Theory Techniques. The duality technique has been dis-
cussed in [44]. The basic idea is to obtain information about a linear preserver by
studying its dual transformation. Sometimes, the dual transformation is easier to char-
acterize; sometimes, the dual transformation is itself an interesting linear preserver.
In any event, studying the linear preserver and its dual transformation often provides
useful information. For example, the dual transformation of a linear preserver of the
spectral norm on Mn is a trace norm preserver. Thus, knowing the structure of the lin-
ear preserver gives complete information of the dual transformation and vice versa.
See [14], [46], and their references for more illustrations of duality techniques.

Next, we turn to a group theory technique. The basic idea is to show that the linear
preservers of a certain invariant form a group G of invertible operators. If G contains
a fairly “big” subgroup H of “obvious” admissible preservers, then the theory of Lie
groups can give us a limited list of groups containing H ; thus, there are not too many
candidates for G. This group scheme is originally due to Dynkin [19], who studied
determinant preservers and showed that

(i) the group G of determinant preservers contains the subgroup H of operators of
the form (1) and (3) for some matrices M and N satisfying det(M N ) = 1, and
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(ii) H is a maximal subgroup in the special linear group of operators on square
matrices.

Since not all invertible linear operators on square matrices preserve determinant, it
follows that H = G.

One can use the same idea to treat the spectral norm preserver problem. Using
Theorem 3.5, one can readily deduce Theorem 4.1.

The group scheme for linear preserver problems has been exploited in [17], [18],
[60], and [22].

4.4. Fundamental Theorem of Projective Geometry. Geometric techniques from
ordinary Euclidean geometry, projective geometry, and algebraic geometry have been
successful in studying linear preserver problems. For an overview, see [58, Chapters 2,
4, 8] and their references. In Section 3.4, we briefly described the idea of treating the
orbit O(A) = {X : X ∼ A} of a certain equivalence relation on a matrix space as a
differentiable manifold, this permits differential geometry techniques to be used.

Here we give a brief discussion of Dieudonné’s method [15] to study the invertible
preservers of the set of singular matrices.

We first give a statement of the Fundamental Theorem of Projective Geometry in
the language of linear algebra. Let V be a vector space of dimension ≥ 3. For our
purposes, a line in V is a one-dimensional subspace of V . Suppose that φ is a bijection
of the lines of V such that for any three coplanar lines in V their images under φ
are also coplanar. Then there is a semi-linear (additive linear) map T on V such that
T (W ) = φ(W ) for every line W in V .

First, Dieudonné showed that a subspace of Mn(F) of dimension n2 − n consisting
only of singular matrices has a common left or right null space of dimension one. Let
L be an invertible linear map that preserves the singular matrices in Mn(F). For each
line W ∈ Fn , let N (W ) be the set of all matrices that annihilate W , and let N t(W ) be
its transpose. It follows that L(N (W )) = N (W1) or N t(W1) for some line W1 ∈ V .
Another dimension argument shows that L(N (W )) = N (W1) or N t(W1) (uniformly)
for every line W . Dieudonné then used this fact to produce a bijective correspondence
of the lines of Fn that satisfies the hypotheses of the Fundamental Theorem of Pro-
jective Geometry. Next, he applied this information to show that all invertible linear
preservers of singular matrices are standard. One can readily verify the same result
when n = 2. Other papers using similar arguments along with the Fundamental Theo-
rem of Projective Geometry include [9] and [59].

4.5. Additional References on General Approaches. Other approaches to linear
preserver problems include the use of functional identities and model theoretic al-
gebra; see [10], [24], and [55] for details.

5. EXCEPTIONS. Usually, a well posed linear preserver problem has only standard
transformations in its solution. There are, however, exceptions, which arise for various
reasons. Among these reasons are

(i) The size n of the matrices is too small.

(ii) The underlying field F of scalars is too small or is not algebraically closed.

(iii) The linear preserver is allowed to be singular.

(iv) The set being preserved contains a special geometric structure, for example, a
vector space or convex cone.
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Of course, some exceptions fall into more than one of these categories and some
are just “mysterious”. In this section, we give several examples of such exceptions and
briefly review some of the related literature.

Exceptions for small n arise, especially when n = 2. One reason for this is that
the Fundamental Theorem of Projective Geometry is not valid. Consider the follow-
ing problem. Let T : Mn(F) → Mn(F) be a non-singular linear transformation that
preserves commutativity: if AB = B A, then T (A)T (B) = T (B)T (A). Watkins [63]
showed that if n ≥ 4 and F has at least 4 elements, then T has the standard forms (4).
Later, Pierce and Watkins [59] obtained the same result for any field and for any n ≥ 3.
They used the Fundamental Theorem of Projective Geometry, and the proof did not
work for n = 2. In fact, the following linear map on M2(R) provides an exceptional
case:

T

[
a b
c d

]
=

[
a a − d
c b + d

]
.

This T is non-singular, preserves commutativity, and does not have the standard form.
See [36] for a discussion of the case n = 2.

Now let F be an algebraic number field, that is, a finite extension of the rationals.
Given n, there exist polynomials of degree n that are irreducible over F. Let p(x) ∈
F[x] be an irreducible monic polynomial of degree n and let C be the companion
matrix of p(x). Define a linear map T on Mn(F) by

T (A) =
n−1∑
j=1

a1 j C
j .

Since p(x) is irreducible, no eigenvalue of T (A) is zero as long as the first row of A
is non-zero. Thus T preserves GLn(F), the collection of invertible matrices over F. Of
course, T is singular.

If F = C, then the preservers of GLn(C) have the standard form (1) or (3) for
some invertible matrices M and N ; see [54]. Thus, all preservers of GLn(C) must be
non-singular. Strikingly, if

SLn(F) = {A ∈ GLn(F) : det(A) = 1},

where F is a subfield of C, we cannot contrive any similar examples for the preservers
of SLn(F). The difference is that SLn(F) is an algebraic set, while GLn(F) is not. By
the going-up theorem of Dixon [17], any linear preserver of SLn(F) extends to a linear
preserver of SLn(C) and this extension preserves GLn(C) as well. Thus a preserver of
SLn(F) must be non-singular.

There are similar exceptions for preservers of the real orthogonal group On(R). If
T preserves On(R), it is possible for T to be singular when n = 2, 4, or 8; see [67].
This is because Mn(R) admits (respectively) the natural embedding of the complex
numbers, quaternions, and Cayley numbers in those dimensions. For example, the map
on M4(R) given by

T




a b c d

∗ ∗


 =




a b c d
−b a −d c
−c d a −b
−d −c b a
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preserves O4(R). If n �= 2, 4, or 8, then any preserver of On(R) must be non-singular
and must have the form A �→ U AV or A �→ U At V for some orthogonal matrices U
and V .

Let Pn be the convex cone of all positive definite Hermitian matrices in Mn(F),
where F ⊆ C. Any non-singular congruence preserves Pn and thus any sum of non-
singular congruences preserves Pn. Let A1, . . . , Ar be invertible matrices in Mn(F).
The linear map T given by

T (X) =
r∑

j=1

A∗
j X A j

is non-singular and preserves Pn , but in general it cannot be reduced to a single con-
gruence. Moreover, the linear map on M3(R) given by

T (A) =

 a11 + a33 −a12 −a13

−a12 a11 + a22 −a23

−a13 −a23 a22 + a33




preserves P3, but is not a sum of congruences. The preservers of Pn are not known al-
though the preservers of any given unbalanced indefinite inertia class have been found;
see Section 3.1.

The exceptional situations cited thus far occur with preservers of certain subsets of
Mn(F). For preservers of functions on singular values, exceptional cases often occur in
M4(R) because it admits embedding of real quaternions in interesting ways; see [32].
For preservers of other functions on singular values of A, exceptional cases occur if
the given function is linear or quadratic in the entries of A. For example, consider
the second elementary symmetric function E2(A) of the eigenvalues of the matrix
A. Since this is quadratic in the entries of A, the isometries of E2 must consist of
more than similarity and transposition. For example, if n ≥ 3, a switch of the (1, 2)
and (2, 1) entries of A preserves E2, but is not of the form (1) or (3) for some M
and N satisfying M N = ±I . The preservers of E2 form a group. A discussion of a
generating set for this group is found in [59] and later in [31]. Otherwise, preservers
of functions on eigenvalues or singular values of matrices usually have standard form
without exception; see Section 3.2.

6. CONCLUSION. We have given a very brief introduction and survey of the sub-
ject. There are many other directions that one may explore. For example, one may
consider quadratic or bilinear preservers [65] and [66], one may consider general (non-
linear) preservers of matrix invariants [5], and preservers on matrices over rings or
integral domains [4], [10], [48], [58, Chapter 8], and [62]. The subject of linear pre-
servers will continue to prosper and will provide fertile grounds for researchers in
many areas to make new discoveries.
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