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Abstract

Short and independent proofs are given to two recent results of Gau and Wu on the unitary

part of a contraction.
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1 Introduction

Let Mn be the set of n × n complex matrices. Suppose A ∈ Mn is a contraction, i.e., ‖Ax‖ ≤
‖x‖ for all x ∈ Cn. By the Schur triangularization lemma, there is a unitary U such that

U∗AU = (aij) is in upper triangular form with |a11| ≤ · · · ≤ |ann| ≤ 1. Because every column

of U∗AU has norm at most one, if |a11| = · · · = |amm| < 1 = |am+1,m+1| = · · · = |ann|, then

U∗AU = A1 ⊕ diag (am+1,m+1, . . . , ann), where A1 has spectral radius strictly less than 1, and

A2 = diag (am+1,m+1, . . . , ann) is unitary. The matrix A2 is the restriction (compression) of A on

the subspace S spanned by the last n−m columns of U , and is called the unitary part of A. Suppose

j(A) is the smallest nonnegative integer such that

Hj(A) = ker(I −Aj∗Aj)

equals S, and k(A) is the smallest nonnegative integer such that Hk(A)∩Hk(A∗) equals S. It was

shown by Gau and Wu [2] that j(A) ≤ n and k(A) ≤ dn/2e. They also characterized those A ∈ Mn

satisfying j(A) = n (respectively, k(A) = dn/2e). Their proofs utilized results in one of their earlier

papers [1], and they related the study to the concept of norm-one index for a contraction. In this

note, we give short independent proofs of their results.

The author would like to thank Professors Hwa-Long Gau and Pei Yuan Wu for some helpful

comments on the first draft of this note.

2 Results and proofs

Denote by r(X) the spectral radius of X ∈ Mn. Following [1], we let Sn be the set of contractions

X ∈ Mn such that In − X∗X has rank one and r(X) < 1. By the discussion in the introduction,

we can always assume that a contraction A ∈ Mn has a decomposition A1 ⊕ A2 so that A1 ∈ Mm

satisfies r(A1) < 1, and A2 ∈ Mn−m is unitary.
1Research supported by NSF and the William and Mary Plumeri Award. Li is an honorary professor of the
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Theorem 1 Suppose A ∈ Mn is a contraction with a decomposition A1⊕A2, where A1 ∈ Mm with
r(A1) < 1, and A2 ∈ Mn−m is unitary.

(a) If j ∈ {1, . . . ,m− 1}, then Hj+1(A1) ⊆ Hj(A1). The inclusion is strict if dim Hj(A1) > 0.

(b) We have j(A1) ≤ m. The equality j(A1) = m holds if and only if A1 ∈ Sm.

Consequently, j(A) = j(A1) ≤ n. The equality j(A) = n holds if and only if A ∈ Sn.

Proof. (a) Note that for any r ∈ {1, . . . ,m}, a unit vector x ∈ Cm lies in Hr(A1) if and
only if ‖Ar

1x‖ = 1, equivalently, ‖A1x‖ = · · · = ‖Ar
1x‖ = 1. So, Hj+1(A1) ⊆ Hj(A1) for any

j ∈ {1, . . . ,m− 1}.
Suppose dim Hj(A1) = ` > 0. Assume the contrary that dim Hj+1(A1) = `. Let {x1, . . . , x`} be

an orthonormal basis for Hj+1(A1). For i = 1, . . . , `, we have 1 = ‖Aj+1
1 xi‖ = ‖Aj

1(A1xi)‖ so that
{A1x1, . . . , A1x`} ⊆ Hj(A1) = span {x1, . . . , x`}. Thus, if U ∈ Mm is unitary such that x1, . . . , x`

are the first ` columns of U , then U∗A1U has the form
(

A11 A12

0 A22

)
with A11 ∈ M`. Since A1 is a

contraction and each column of A11 is a unit vector, we see that A12 = 0 and A11 is unitary, which
contradicts the fact that r(A1) < 1.

(b) Since A1 is a contraction with r(A1) < 1, by (a) we have

dim Hm(A1) < · · · < dim H1(A1) < dim H0(A1) = m,

if none of dimj(A1) is 0 for j = 1, . . . ,m − 1. Thus, j(A1) ≤ m. Furthermore, if j(A1) = m, then
dim Hj(A1) = m − j for j = 1, . . . ,m. Hence, dim H1(A1) = m − 1, i.e., Im − A∗

1A1 has rank 1.
Hence, A1 ∈ Sm.

Conversely, suppose A1 ∈ Sm. Then for V = H1(A1), we have dim[A1(V ) ∩ V ] ≥ m − 2.
Inductively, we have dim[Aj

1(V ) ∩ V ] ≥ m − j − 1. Thus, j = m − 1 is the smallest integer such
that dim[Aj

1(V ) ∩ V ] = 0 so that Hj+1(A1) = {0}. Hence, j(A1) = m.
Note that j(A) = j(A1). The last assertion follows readily from (a) and (b). 2

Theorem 2 Suppose A ∈ Mn is a contraction with a decomposition A1⊕A2, where A1 ∈ Mm with
r(A1) < 1, and A2 ∈ Mn−m is unitary.

(a) If k is a nonnegative integer such that k ≤ m/2, then

dim [Hk+1(A1) ∩Hk+1(A∗
1)] ≤ max{0,dim [Hk(A1) ∩Hk(A∗

1)]− 2}.

(b) We have k(A1) ≤ dm/2e. The equality k(A1) = dm/2e holds if and only if

(i) A1 ∈ Sm, or (ii) m is even and ‖Am−2
1 ‖ = 1 > ‖Am−1

1 ‖.

Consequently, k(A) = k(A1) ≤ dn/2e. The equality k(A) = dn/2e holds if and only if one of the
following holds.

(1) A ∈ Sn.
(2) n is even and A is unitarily similar to [eit]⊕A1 with t ∈ R and A1 ∈ Sn−1.
(3) n is even, ‖An−2‖ = 1 > ‖An−1‖.
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Proof. (a) Let Vk = Hk(A1) ∩ Hk(A∗
1). Then a unit vector x ∈ Cm lies in Vk if and only if

‖Bkx‖ = 1 for B ∈ {A1, A
∗
1}, equivalently, ‖Brx‖ = 1 for r = 1, . . . , k. Thus, Vk+1 ⊆ Vk.

Suppose {x1, . . . , xp} is an orthonormal basis for Vk so that {x1, . . . , x`} is a basis for Vk+1. We
claim that ` ≤ max{0, p− 2}.

Suppose the claim is not true, and ` ∈ {p, p − 1} with ` > 0. Since A1 is a contraction and
1 = ‖Ar

1xj‖ for r = 1, . . . , k, we see that A∗r
1 Ar

1xj = xj for j = 1, . . . , p. For i ∈ {1, . . . , `}, we have
‖Ak

1(A1xi)‖ = ‖Ak+1
1 xi‖ = 1 and ‖A∗k

1 (A1xi)‖ = ‖A∗(k−1)
1 (A∗

1A1xi)‖ = ‖A∗(k−1)
1 xi‖ = 1. Thus,

{A1x1, . . . , A1x`} ⊆ Vk = span {x1, . . . , xp}.
Let U ∈ Mm be such that x1, . . . , xp are the first p columns of U , and Ã1 = U∗A1U has the

form Ã1 =
(

A11 A12

A21 A22

)
with A11 ∈ Mp. Then each of the first p columns (respectively, rows) of

Ã1 has unit length.
If ` = p, then A12 and A21 are zero matrices, and the columns of A11 have unit length. Since

A1 is a contraction, A11 is unitary, which contradicts the fact that r(A1) < 1.
If ` = p−1, then only the last column of A21 and the last row of A12 can be nonzero. Moreover,

Ã∗
1Ã1 = Ip ⊕ C for some C ∈ Mm−p so that A∗

11A11 = Ip−1 ⊕ [µ] for some µ ∈ [0, 1]. Similarly, we
have Ã1Ã

∗
1 = Ip−1 ⊕ C̃ for some C̃ ∈ Mm−p so that A11A

∗
11 = Ip−1 ⊕ [µ]. Clearly, we have µ < 1.

Otherwise, ‖Bk+1xp‖ = 1 for B ∈ {A1, A
∗
1} so that xp ∈ Vk+1. Consequently, A11 = W ⊕ [γ], where

|γ|2 = µ and W ∈ Mp−1 is unitary, which contradicts the fact that r(A1) < 1.
By the above discussion, we see that ` ≤ max{0, p− 2}.
(b) By (a), m ≥ dim V1 + 2 ≥ dim V2 + 4 ≥ · · · ≥ dim Vj + 2j ≥ · · ·. Thus, if m = 2k or

m = 2k − 1, then k(A1) ≤ k.
If A1 ∈ Sm, then ‖Am−1‖ = 1 by Theorem 1. Thus, there is a unit vector x ∈ Cm such

that x,A1x, . . . , Am−1
1 x are unit vectors. If m = 2k − 1, then Ak−1

1 (Ak−1
1 x) = A2k−2

1 x and
(A∗

1)
k−1Ak−1

1 x = x are unit vectors. So, Ak−1
1 x ∈ Vk−1, and hence Vk−1 6= {0}. Thus, k is

the smallest integer satisfying Vk = {0}. Similarly, if m = 2k and ‖Am−2
1 ‖ = 1, then Ak−1

1 x ∈ Vk−1

so that k is the smallest integer satisfying Vk = {0}.
Conversely, if m = 2k or m = 2k− 1, and Vk−1 is nonzero, then there is a unit vector x ∈ Vk−1,

i.e., Ak−1
1 x and (A∗

1)
k−1x are unit vectors. Since Ak−1

1 is a contraction, we see that (Ak−1
1 )∗Ak−1

1 x =
x. Thus (A∗

1)
2k−2(Ak−1

1 x) = (A∗
1)

k−1x is a unit vector. If m = 2k − 1, then ‖Am−1
1 ‖ = 1; by

Theorem 1, A ∈ Sm. If m = 2k, then ‖Am−2
1 ‖ = 1; moreover, either ‖Am−1

1 ‖ = 1 so that A1 ∈ Sm,
or ‖Am−1

1 ‖ < 1.
Note that k(A) = k(A1). The last assertion follows readily from (a) and (b). 2
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