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Abstract

_( Hy FE* ~ (H O
A= ( E ) and A= ( o0 M
be Hermitian matrices with eigenvalues A\; > --- > Ay and Xl > > Xk, respectively.

Denote by ||E|| the spectral norm of the matrix E, and n the spectral gap between
the spectra of H; and Hs. It is shown that

Let

2| E||?
n+ /2 +A4|E|2’

which improves all the existing results. Similar bounds are obtained for singular values
of matrices under block perturbations.
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1 Introduction
Consider a partitioned Hermitian matrix
m n

_ wm (H E
a=r () (11)

where E* is E’s complex conjugate transpose. At various situations (typically when F is
small), one is interested in knowing the impact of removing E and E* on the eigenvalues
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of A. More specifically, one would like to obtain bounds for the differences between that
eigenvalues of A and those of its perturbed matrix

m n
~ m(H O
i (M 0) 0
Let A(X) be the spectrum of the square matrix X, and let ||Y|| be the spectral norm of

a matrix Y, i.e., the largest singular value of Y. There are two kinds of bounds for the
eigenvalues A\ > -+ > Apap and Ay > -+ > A\pqpy of A and A, respectively:

1. 1,7, 8] N
A — Nl < B (1.3)

2. [1, 2,3, 5,7, 8] If the spectra of Hy and Hy are disjoint, then

A = Ail < B/, (14)
where
n def min |1 — po|
H1EX(H1), p2€X(H2) ’

and A(H;) is the spectrum of H;.

The bounds of the first kind do not use information of the spectral distribution of the H
and Ho, which will give (much) weaker bounds when 7 is not so small; while the bounds
of the second kind may blow up whenever H; and Hy have a common eigenvalue. Thus
both kinds have their own drawbacks, and it would be advantageous to have bounds that
are always no bigger than ||E||, of O(||E||) as n — 0, and at the same time behave like
O(|E||?/n) for not so small 5. To further motivate our study, let us look at the following
2 x 2 example.

Example 1 Consider the 2 x 2 Hermitian matrix

A:(‘z ;) (1.5)

Interesting cases are when € is small, and thus « and § are approximate eigenvalues of A.
We shall analyze by how much the eigenvalues of A differ from « and . Without loss of
generality, assume

a > f.

The eigenvalues of A, denoted by i, satisfy A2 — (a4 B)A + a3 — €2 = 0; and thus

)\i_oz-i—ﬂj:\/(a—i—ﬁ)z—él(ozﬁ—ez) _a+BE(a-p)?+4e
N 2 N 2 '




Now

M—a) | —(e—B)+/a—prTae
0<{ﬂ_k_} _ .
2¢2

(= B) + /(= B)* + 4e?
which provides a difference that enjoys the following properties:
< e always,

2¢2
—€ asa— T,

(a—B)++/(a—B)% + 42 <e/(a—B).

The purpose of this note is to extend this 2 x 2 example and obtain bounds which improve
both (1.3) and (1.4). Such results are not only of theoretical interest but also important
in the computations of eigenvalues of Hermitian matrices [4, 6, 9].

As an application, similar bounds are presented for the singular value problem.

2 Main Result

Theorem 2 Let

m n m n
_om H, E* T.m H; 0
A_n<E H2> and A_n(o H,y
be Hermitian matrices with eigenvalues
AMZA > > Ay and Xl > X2 > 2 Xm—i—na (21)

respectively. Define

min ’Xi—/LQ’, Z'inG)\(Hl),

def p2E€X(H2)
" in Rl i A € A(HD) 22
min P — , U A€ )
H1ENH7) i ‘ 2
def . .
= min = min — . 2.3
g 1<i<m+n i w1 EXN(H1), p2€X(Hz) ‘Ml M2’ ( )
Then fori=1,2,---,m + n, we have
~ 2||E|?
IAi — Al < ”2 I (2.4)
mi + /i + A E|?
2||E|?
< 2] (2.5)

n+ /% +A4[E|2



Proof. Suppose U*H1U and V*HsV are in diagonal form with diagonal entries arranged
in descending order. We may assume that U = [,;, and V = I,,. Otherwise, replace A by

Ua V) AUa V).

We may perturb the diagonal of A so that all entries are distinct, and apply continuity
argument for the general case.

We prove the result by induction on m +n. If m +n = 2, the result is clear (from our
Example). Assume that m +n > 2, and the result is true for Hermitian matrices of size
m-+n—1.

First, refining an argument of Mathias [5], we show that (2.4) holds for i = 1. Assume
that the (1,1) entry of H; equals A;. By the min-max principle [1, 7, 8], we have

AL > el Ae; = Ay,

where e; is the first column of the identity matrix. Let

I 0
X = m .
(_(H2 _Nlln)_lE In)

. _( Hi(M) 0
X(A—All)X_< . H2—A11n>’

Then

where

Hi(\) = Hy — M1, — E*(Hy — \I,) 'E.

Since A and X*AX have the same inertia, we see that Hl(/\1)~has zero as the largest
eigenvalue. Notice that the largest eigenvalue of Hy — A1 is Ay — A1 < 0. Thus, for
91 = |A1 — A1] = XA — A1, we have (see [7, (10.9)])

M < M+ BB/ (60 +m),

and hence
51 < ||E|1?/ (61 +m).

Consequently,
2| Bl
01 <
m A+ v/nt + 4] E?

as asserted. Similarly, we can prove the result if the (1,1) entry of Hy equals A1. In this
case, we will apply the inertia arguments to A and Y AY™* with

I 0
Y= (—E(H1 - MIp)7t In> '

Applying the result of the last paragraph to —A, we see that (2.2) holds for i = m +n.



Now, suppose 1 < i < m + n. The result trivially holds if A\; = Xi.~Suppose A # Xz
We may assume that \; > ;. Otherwise, replace (4, g,z) by (A, —A,m+n—i+1).
Delete the row and column of A that contain the diagonal entry A,. Suppose the resulting
matrix A has eigenvalues v; > -+ > Vpyin—1. By the interlacing inequalities [7, Section
10.1], we have N N

i >y and hence i — AN <\ — i (2.6)

Note that Xl is the ith largest diagonal entries in A. Let 7; be the minimum distance
between Xl and the diagonal entries in the diagonal block H j in A not containing Xi; here
j € {1,2}. Then

ni > i
because H ; may have one fewer diagonal entries than H;. Let E be the off-diagonal block
of A. Then ||E|| < |E|. Thus,

|)\i — X1| = Xz -\ because Xz > A\
< N—y by (2.6)
2| E||2
< LE] — by induction assumption
i+ /07 + 4| E?
2| E? oo
< — because 7; > n;
i+ /1 + 4|2
1 ~
= S\Vm FAIEIP —n
1 ~
< SymHAIEI? —m because B < | E]

2| E|?
i+ /1 + 4B

as asserted. l

3 Application to Singular Value Problem

In this section, we apply the result in Section 2 to study singular values of matrices. For
notational convenience in connection to our discussion, we define the sequence of singular
values of a complex p X ¢ matrix X by

o(X) = (01(X), ..., or(X)),

where k = max{p,q} and o01(X) > --- > ox(X) are the nonnegative square roots of
the eigenvalues of the matrix X X™* or X*X depending on which one has a larger size.
Note that the nonzero eigenvalues of X X* and X*X are the same, and they give rise to
the nonzero singular values of X which are of importance. We have the following result
concerning the nonzero singular values of perturbed matrices.



Theorem 3 Let

k L k )4
Gl El i m G1 0]
n (EQ GQ) an n < 0 G2
be complex matrices with singular values
o1 20222 Omax{m+n,k+¢} and 01 >022> > amax{m—&-n,k—‘,—@}7 (31>
respectively, so that G and Gy are non-trivial. Define € = max{| E1||, | E2||}, and

min |5i—u2|, ifEiEU(Gl),

def p2€o(Ga)
ni = S . (32)
min |o; — p1|, if 05 € 0(G2),
pi1€a(G)
n € min = min_ | — pal. (3.3)
1<i<m+n n1€0(G1), p2€o(Ga)

Then fori=1,2,--- ,min{m + n, k + £}, we have

~ 262
lo; —oi] < < (3.4)

ni 4+ /07 + 4€

2¢?

n+/n? +4e2’

<

and o; = 0; =0 for i > min{m + n, k + ¢}.
ProOF: By Jordan-Wielandt Theorem [8, Theorem 1.4.2], the eigenvalues of

(5 )

are +o; and possibly some zeros adding up to m+n+k+/{ eigenvalues. A similar statement
holds for B. Permuting the rows and columns appropriately, we see that

O G| O E;
O B .. Gy O |E5 O
(B* O> is similar to 0 B0 Gl
Ef O |G5 O
and
~ 0O Gy
<~O B) is similar to Gi O
B* O O Go
G5 O




Applying Theorem 2 with

(O G (O Ep
(3 5) moo-(25)

we get the result. i

One can also apply the above proof to the degenerate cases when Gy or Go in the
matrix B is trivial, i.e., one of the parameters m,n, k, ¢ is zero. These cases are useful in
applications. We state one of them, and one can easily extend it to other cases.

Theorem 4 Suppose B= (G E) and B = (G O) are px q matrices with singular values
o122 Omax{p,q} and 01> ...> 5max{p,q}7

respectively. Then fori=1,...,min{p, q},
o5« 2E
0; — U'L| = .
20, + (/02 + 4| E||?
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