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Abstract. For any n-by-n complex matrix A, we use the joint numerical range W (A,A2, . . . , Ak) to study the

polynomial numerical hull of order k of A, denoted by V k(A). We give an analytic description of V 2(A) when A is

normal. The result is then used to characterize those normal matrices A satisfying V 2(A) = σ(A), and to show that

a unitary matrix A satisfies V 2(A) = σ(A) if and only if its eigenvalues lie in a semicircle, where σ(A) denotes the

spectrum of A. When A = diag (1, w, . . . , wn−1) with w = ei2π/n, we determine V k(A) for k ∈ {2}∪{j ∈ N : j ≥ n/2}.

We also consider matrices A ∈ Mn such that A2 is Hermitian. For such matrices we show that V 4(A) is the spectrum

of A, and give a description of the set V 2(A).
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1 Introduction

Let Mn be the set of n × n complex matrices. Motivated by the study of convergence of iterative

methods in solving linear systems (e.g., see [2, 3, 4]), researchers studied the polynomial numerical

hull of order k of a matrix A ∈ Mn, which is defined and denoted by

V k(A) = {ξ ∈ C : |p(ξ)| ≤ ‖p(A)‖ for all p(z) ∈ Pk[C]},

where Pk[C] is the set of complex polynomials with degree at most k. The joint numerical range

of (A1, A2, . . . , Am) ∈ Mn × · · · × Mn is denoted by

W (A1, A2, . . . , Am) = {(x∗A1x, x∗A2x, . . . , x∗Amx) : x ∈ C
n, x∗x = 1}.

By the result in [2] (see also [3])

V k(A) = {ζ ∈ C : (0, . . . , 0) ∈ conv W ((A − ζI), (A − ζI)2, . . . , (A − ζI)k)},

where conv X denotes the convex hull of X ⊆ C
k.

In this paper, we use the joint numerical range W (A,A2, . . . , Ak) to study V k(A) for A ∈ Mn.

Denote by σ(A) the spectrum of A ∈ Mn. In Section 2, we give an analytic description of V 2(A)

when A ∈ Mn is normal. The result is then used to characterize those normal matrices A satisfying
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V 2(A) = σ(A), and to show that a unitary matrix A satisfies V 2(A) = σ(A) if and only if its

eigenvalues lie in a semicircle. When A = diag (1, w, . . . , wn−1) with w = ei2π/n, we determine

V k(A) for k ∈ {2} ∪ {j ∈ N : j ≥ n/2} in Section 3. Section 4 concerns those matrices A ∈ Mn

such that A2 is Hermitian. For such matrices we show that V 4(A) = σ(A), and give a description

of the set V 2(A). Additional results and remarks are given in Section 5.

Below we state some properties of the polynomial numerical hull of A ∈ Mn; one may see [1, 3]

for details.

1) σ(A) ⊆ V k+1(A) ⊆ V k(A) ⊆ V 1(A) = W (A), for all k ≥ 1.

2) If m is the degree of the minimal polynomial of A, then V k(A) = σ(A) for all k ≥ m.

3) V k(αA + βI) = αV k(A) + β for all α and β in the complex plane C.

4) Let A = A∗. Then V 2(A) = σ(A).

5) Let A be a normal matrix. Then ∂(W (A))∩V 2(A) ⊆ σ(A), where ∂(D) means the boundary

of D.

6) If A is normal or an upper triangular Toeplitz matrix, then W (A, . . . , Ak) is convex, and

hence

V k(A) = {ζ ∈ C : (ζ, . . . , ζk) ∈ W (A, . . . , Ak)}
= {x∗Ax : x ∈ C

n, x∗x = 1, and (x∗Ax)j = x∗Ajx, j = 1, 2, . . . , k}.

In fact, it can be shown that (0, . . . , 0) ∈ conv W ((A − ζI), . . . , (A − ζI)k) if and only if

(ζ, . . . , ζk) ∈ conv W (A, . . . , Ak); see Theorem 5.3.

2 Polynomial numerical hull of order two for normal matrices

In the following, we will develop a scheme to give an analytic description of V 2(A) for a normal

matrix A = H + iG = diag (a1, . . . , an), where H and G are Hermitian. By (6) in Section 1,

µ = x + iy ∈ V 2(A) if and only if (µ, µ2) ∈ W (A,A2), equivalently,

(x, y, x2 − y2, 2xy) ∈ W (H,G,H2 − G2,HG + GH) ⊂ R
4.

By [1, Theorem 3.2], if a1, . . . , an lie in a rectangular hyperbola, then so does V 2(A). However,

exactly which part of the hyperbola belongs to V 2(A) was not determined. The following result

addresses this problem.

Theorem 2.1 Let A = H + iG with H∗ = H = diag (h1, . . . , hn) and G∗ = G = diag (g1, . . . , gn)

be such that

{(hj , gj) : 1 ≤ j ≤ n} ⊆ R = {(x, y) : r1(x
2 − y2) + r2xy = r3x + r4y + r5},

where r1r2 6= 0. Then (x, y) ∈ V 2(A) if and only if (x, y) ∈ R and one or both of the following

holds:
(a) (x, y, x2 − y2) ∈ W (H,G,H2 − G2) if r1 6= 0.

(b) (x, y, xy) ∈ W (H,G,HG) if r2 6= 0.
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Proof. The necessity follows from Theorem 3.2 in [1] and (6) in section 1. For the converse, by

the convexity of W (H,G,H2 − G2), there exist t1, . . . , tn ≥ 0 with t1 + · · · + tn = 1 such that

(x, y, x2 − y2) =

n
∑

j=1

tj(hj , gj , h
2
j − g2

j ) ∈ W (H,G,H2 − G2).

Then (x, y) ∈ R implies that

r2xy = r3x + r4y + r5 + r1(y
2 − x2) =

n
∑

j=1

tj(r3hj + r4gj + r5 + r1(g
2
j − h2

j )) =

n
∑

j=1

r2tjhjgj .

Thus, (x, y, x2 − y2, xy) ∈ W (H,G,H2 − G2, GH). The result follows.

The case for (x, y, xy) ∈ W (H,G,GH) can be proved in a similar way. �

If n = 2 then V 2(A) = σ(A). If n = 3 then V 2(A) = σ(A) or V 2(A) = σ(A) ∪ {µ} if the

orthocenter µ of the triangle with vertices eigenvalues a1, a2, a3 of A lies in W (A); see for example

[1, Theorem 2.4].

Suppose A ∈ M4 is normal. If there are µ, ν ∈ C with µ 6= 0 such that the eigenvalues of

µA + νI lie in R ∪ iR, then one can apply the results in [1, Section 2] (see also Theorem 4.4 ) to

determine V 2(A). If it is not the case, then Theorem 2.2 below gives a complete description of

V 2(A). In particular, the result shows that one can reduce the problem to the special case where

A = diag (−1, 1, µ, ν), so that the intersection of the open intervals (−1, 1) and (Re(µ),Re(ν)) will

determine the set V 2(A) readily. As we will see, Theorem 2.2 is the key result allowing us to give

an analytic description for V 2(N) for a normal matrix N ∈ Mn for any n ∈ N.

Theorem 2.2 Let A = diag (a1, . . . , a4) be such that a1, . . . , a4 are not contained in two perpendic-

ular lines. Suppose R ⊆ C ≡ R
2 is the rectangular hyperbola uniquely determined by a1, a2, a3, a4

and is the union of the two branches R1 and R2. Then V 2(A) ⊆ R, and V 2(A) can be determined

as follows.

(a) Suppose each branch of R contains two of the eigenvalues, say, a1, a2 ∈ R1 and a3, a4 ∈ R2.

Let (u1, v1) = (2, a1 + a2)/(a1 − a2) and u1A − v1I = diag (1,−1, x3 + iy3, x4 + iy4). Then

z ∈ R1 belongs to V 2(A) if and only if z = a1, a2 or u1z − v1 = x + iy with x ∈ (−1, 1)

such that x lies between x3 and x4. Let (u2, v2) = (2, a3 + a4)/(a3 − a4) and u2A − v2I =

diag (x1 + iy1, x2 + iy2, 1,−1). Then z ∈ R2 belongs to V 2(A) if and only if z = a3, a4 or

u2z − v2 = x + iy with x ∈ (−1, 1) such that x lies between x1 and x2.

(b) Suppose one of the branches of R contains three of the eigenvalues, say, a1, a2, a3 ∈ R1 with

a3 lying between a1 and a2. Let (u, v) = (2, a1 +a2)/(a1−a2) and uA−vI = diag (1,−1, x3 +

iy3, x4 + iy4). Then z ∈ R1 belongs to V 2(A) if and only if z = a1, a2, a3 or uz − v = x + iy

with x ∈ (−1, 1) such that x lies between x3 and x4.

(c) Suppose one of the branches of R contains four eigenvalues a1, a2, a3, a4. Then V 2(A) = σ(A).

3



Proof. By Theorem 3.1 in [1], V 2(A) ⊆ R ∩ W (A).

(a) Since V 2(uA − vI) = uV 2(A) − v, we may replace A by uA − vI and assume that A =

diag (1,−1, x3 + iy3, x4 + iy4). Since V 2(A) = V 2(A∗), we may replace A by A∗ if necessary, and

assume that y3, y4 > 0. Furthermore, we may assume that x3 < x4. Otherwise, replace A by
−A and relabel the third and fourth eigenvalues. Then the rectangular hyperbola passing through

(1, 0), (−1, 0), (x3 , y3), (x4, y4) satisfies a formula of the form

y2 + (ax + c)y + (1 − x2) = 0. (1)

Let A = H + iG and consider the joint numerical range W (H,G,H2 − G2), which is the convex

hull of the points

(−1, 0, 1), (1, 0, 1), (x3 , y3, x
2
3 − y2

3), (x4, y4, x
2
4 − y2

4).

Since (x3, y3), (x4, y4) satisfy (1), we see that

x2
j − y2

j = (axj + c)yj + 1 for j = 3, 4.

So, the plane passing through the point (−1, 0, 1), (1, 0, 1), (xj , yj, x
2
j − y2

j ), make an angle θj ∈
[−π/2, π/2] with the plane P = {(x, y, 1) : x, y ∈ R}, where

tan θj = (x2
j − y2

j − 1)/(yj − 0) = [(axj + c)yj + 1 − 1]yj = axj + c, j = 3, 4.

Now, for any point (x, y) ∈ R1, the line joining (x, y, x2 −y2) ∈ R1 and the point (x, 0, 1) will make

an angle θ with the plane P such that

tan θ = ((x2 − y2) − 1)/(y − 0) = [(ax + c)y + 1 − 1]/y = ax + c.

Thus, the values (x, y, x2 − y2) lie between the two triangular laminas

Tj = conv {(−1, 0, 1), (1, 0, 1), (xj , yj , x
2
j − y2

j )}, j = 3, 4,

if and only if tan θ lies between tan θ3 and tan θ4, equivalently, x ∈ [x3, x4]. Note that for (x, y) ∈
R1, the point (x, y, x2 − y2) lies between the two triangular laminas T3 and T4 if and only if

(x, y, x2 − y2) ∈ W (H,G,H2 − G2). By Theorem 2.1, we see that (x, y) ∈ V 2(A) ∩ R1 if and only

if x ∈ [x3, x4].

The proof for the other branch in (a) and the proof for (b) can be done similarly.

(c) If a1, a2, a3, a4 belongs to a branch of R, then W (A) = conv {a1, a2, a3, a4} only intersect R

at a1, a2, a3, a4. So σ(A) ⊆ V 2(A) ⊆ R ∩ W (A) = σ(A). �

By the above theorem and the results in [1, Section 2] (see also Theorem 4.4 ), we have the

following.

Corollary 2.3 Let B = diag (a1, a2, a3, a4) be such that a1, . . . , a4 ∈ C are distinct. Then the

following conditions are equivalent.

(a) V 2(B) = σ(B)
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(b) V 2(B) is finite.

(c) One of the following holds.

(c.1) a1, . . . , a4 are contained in a straight line.

(c.2) One of the points a1, . . . , a4 is the orthocenter of the triangle with the other three points
as vertices.

(c.3) There are µ, ν ∈ C with µ 6= 0 such that {µaj + ν : 1 ≤ j ≤ 4} = {b1, b2, b3, i} satisfying

{b1, b2, b3} ⊆ [0,∞), {b1, b2, b3} ⊆ (−∞, 0], or {b1, b2, b3} ⊆ R \ {0} with the property

that conv {bp, bq, i} is not an acute angle triangle for any p, q ∈ {1, 2, 3}.
(c.4) Q = conv {a1, a2, a3, a4} is a quadrangle such that conv {µ, ap, aq} is not an acute angle

triangle for any p, q ∈ {1, 2, 3, 4}, where µ is the intersection of the diagonals of Q.

Proof. We consider three cases.

Case 1. Suppose σ(B) is a subset of the straight line. Then V 2(B) = σ(B).

Case 2. Suppose σ(B) is a subset of two perpendicular lines. By the results in [1, Section 2] (see

also Theorem 4.4 and the two examples following it ), either

(i) V 2(B) 6= σ(B) and V 2(B) contains a nontrivial line segment, or

(ii) V 2(B) = σ(B) so that (c.2) or (c.3) holds.

Case 3. Suppose σ(B) is not a subset of two perpendicular lines. Then a1, a2, a3, a4 determine a

unique rectangular hyperbola R not equal to a pair of perpendicular lines, and one of the conditions

(a) – (c) of Theorem 2.2 holds.

Suppose Theorem 2.2 (a) holds. We can assume that a1, a2 lie in one branch of R and a3, a4 lie

in anther branch. Following the arguments in the proof of Theorem 2.2, we see that V 2(B) 6= σ(B)

if and only if (−1, 1) ∩ (x3, x4) 6= ∅ and (−1, 1) ∩ (x1, x2) 6= ∅. One can check that these conditions

are equivalent to the existence of a non-degenerate acute angle triangle of the form conv {µ, ap, aq},
where µ is the intersection of the diagonals of Q and p, q ∈ {1, 2, 3, 4}. Thus, either

(i) V 2(B) 6= σ(B) and V 2(B) contains a nontrivial segment of R, or

(ii) V 2(B) = σ(B) and condition (c.4) holds.

Suppose Theorem 2.2 (b) holds, say, a1, a2, a3 lie in one branch of R so that a1 and a2 are the

end points of the segment of the curve. Following the arguments in the proof of Theorem 2.2, we

see that V 2(B) 6= σ(B) if and only if (−1, 1) ∩ (x3, x4) 6= ∅. Thus,

(i) V 2(B) contains a nontrivial segment of R, unless

(ii) a3 is the orthocenter of the triangle conv {a1, a2, a4}.

However, if (ii) holds, then σ(B) will lie in the union of two perpendicular line, which is a

contradiction. So, (i) must hold in this case.

If Theorem 2.2 (c) holds, then V 2(B) = σ(B).

Combining the analysis in Cases 1–3, we see that V 2(B) 6= σ(B) if and only if V 2(B) is infinite.

Moreover, V 2(B) = σ(B) if and only if one of the conditions (c.1)–(c.4) holds. �
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Remark 2.4 Consider A = H + iG ∈ Mn with n ≥ 5. Note that W (H,G,H2 − G2,HG) is a

polyhedron in R
4. By elementary convex analysis, we have the following observations.

(a) Every point in W (H,G,H2 − G2,HG) is a convex combination of at most 5 vertices.

(b) Every boundary point of W (H,G,H2−G2,HG) is a convex combination of at most 4 vertices.

(c) Suppose (µ, µ2) ∈ W (A,A2) is an interior point, i.e., (µ+ε1, µ
2+ε2) ∈ W (A,A2) for ε1, ε2 ∈ C

with |ε1|2 + |ε2|2 < d for some d > 0. Then clearly µ lies in the interior of V 2(A). So, if µ is

a boundary point of V 2(A), then (µ, µ2) is a boundary point of W (A,A2) and is determined

by 4 vertices of W (A,A2).

By observation (c) above, we have the following result giving an analytic description of V 2(A)

for a normal matrix A ∈ Mn with more than four distinct eigenvalues.

Theorem 2.5 Suppose A ∈ Mn is a normal matrix with distinct eigenvalues a1, . . . , am such that

m > 4. Then the boundary of V 2(A) is a subset of

S = ∪{V 2(diag (aj1 , aj2 , aj3, aj4)) : 1 ≤ j1 < j2 < j3 < j4 ≤ m}.

Consequently, V 2(A) is equal to the union of the set S and the set of complex numbers enclosed by

the closed curves in the set S.

Proof. The first statement follows from Remark 2.4 (c). Since V 2(A) is polynomially convex;

see [4] and [1, Lemma 3.5], the set includes all the points inside the bounded closed regions enclosed

by the boundary curves as well. �

We illustrate this theorem with the following example.

Example 2.6 Suppose A = diag (1+i/2, 1−i/2,−1+i/2,−1−i/2, 0). Then V 2(A) = R1∪R2∪{0},
where R1 ⊆ C ≡ R

2 is the closed region bounded by the following:

L1 = {t(1, 1/2) + (1 − t)(3/4, 0) : t ∈ [0, 1]},
L2 = {t(1,−1/2) + (1 − t)(3/4, 0) : t ∈ [0, 1]}, and

C1 = {(x, y) : x2 − y2 = 3/4, x ∈ [
√

3/2, 1]},
and R2 is the closed region bounded by the following:

L3 = {t(−1, 1/2) + (1 − t)(−3/4, 0) : t ∈ [0, 1]},
L4 = {t(−1,−1/2) + (1 − t)(−3/4, 0) : t ∈ [0, 1]}, and

C2 = {(x, y) : x2 − y2 = 3/4, x ∈ [−1,−
√

3/2]}.

Proof. Using the four points {1 + i/2, 1 − i/2,−1 + i/2,−1− i/2}, we get the set C1 ∪C2. The

four line segments L1, L2, L3, L4 are obtained using 0 and three other nonzero points. The union

of these sets cover the boundary points of V 2(A). Taking the interior of those regions enclosed by

closed curves, we get the set V 2(A).
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Here we depict the sets V 2(A1), V
2(A2), V

2(A3), V
2(A4), V

2(A5), where Aj is obtained from A

by removing the jth row and jth column.
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V 2(A1) = L4 ∪ {0} V 2(A2) = L3 ∪ {0} V 2(A3) = L2 ∪ {0}
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V 2(A4) = L1 ∪ {0} V 2(A5) = C1 ∪ C2

Taking the union of these curves, we get the boundary of V 2(A). We can then fill in all the

points enclosed by closed curves.

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

The boundary of V 2(A) The set V 2(A).
�

It is well-known that a normal matrix A ∈ Mn with three distinct eigenvalues a1, a2, a3 satisfies

V 2(A) = σ(A) if and only if conv {a1, a2, a3} is not an acute triangle. Using Theorems 2.2 and 2.5,

we can characterize those normal matrices A such that V 2(A) = σ(A) in general. Again, the key

is checking the 4-by-4 case.

Theorem 2.7 Let A ∈ Mn be a normal matrix with at least four distinct eigenvalues. The following
conditions are equivalent.

(a) V 2(A) = σ(A).

(b) The set V 2(A) is finite.

(c) For any four distinct eigenvalues a1, a2, a3, a4 of A, one of the conditions (c.1)–(c.4) in Corol-

lary 2.3 holds.

Proof. The implication (a) ⇒ (b) is clear.

To prove (b) ⇒ (c), suppose (c) is not valid. Let B = diag (a1, a2, a3, a4) be such that V 2(B) 6=
σ(B). By Corollary 2.3, V 2(B) is an infinite. Since V 2(B) ⊆ V 2(A), V 2(A) is infinite as well.
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Finally, we consider the implication (c) ⇒ (a). Suppose (c) holds. For any four eigenvalues

a1, . . . , a4 of A, we can assume that they are distinct. Otherwise, we can add other eigenvalues

to the collection. Let B = diag (a1, . . . , a4). Then V 2(B) = σ(B) ⊆ σ(A) by Corollary 2.3. By

Remark 2.4 (c), the boundary of V 2(A) is a subset of σ(A). Thus, V 2(A) = σ(A). �

The next theorem characterizes those unitary matrices A satisfying V 2(A) = σ(A).

Theorem 2.8 Suppose A ∈ Mn is a unitary matrix. Then V 2(A) = σ(A) if and only if σ(A) lies

in a semi-circle (including end points).

Proof. The result is clear if A has less than four distinct eigenvalues. So, assume it is not the
case. Suppose the eigenvalues of A do not belong to a semicircle. Then there are three points in

σ(A) such that the triangle generated by them is an acute angle triangle, and its orthocenter does

not belong to σ(A). So, V 2(A) 6= σ(A).

Conversely, suppose all the eigenvalues of A lie in a semicircle. Then for any four distinct

eigenvalues a1, a2, a3, a4 of A, conv {a1, a2, a3, a4} is a quadrangle satisfying Corollary 2.3 (c.4). By

Theorem 2.7, V 2(A) = σ(A). �

3 Polynomial numerical hulls of the basic circulant matrix

Let Pn = E12 + · · ·+ En−1,n + En1 be the basic circulant matrix, whose powers span the algebra of

circulant matrices. Then Pn is unitarily similar to

Dn = diag (1, w, . . . , wn−1), (2)

where w = ei2π/n. Then V k(Pn) = V k(Dn), k = 1, . . . , n. We begin with a characterization of

V k(Dn) when k ≥ n/2.

Theorem 3.1 Let Dn = diag (1, w, . . . , wn−1) with w = ei2π/n. If k is a positive integer such that

n/2 < k < n, then

V k(Dn) = σ(Dn) ∪ {0}.

If n = 2k is even, then

V k(Dn) =
n−1
⋃

j=0

wj [0, 1].

Proof. It is easy to check that (Dk
n)∗ = Dn−k

n for all k = 1, . . . , n. Suppose n/2 < k < n

and z ∈ V k(Dn). Then there is a unit vector v such that v∗Dj
nv = zj for j = 1, . . . , k. Hence,

zk = z̄n−k. Applying absolute value on both sides, we see that |z| = 1 or z = 0. In the former case,

zn = 1 and hence z ∈ σ(Dn). Thus, σ(Dn) ⊆ V k(Dn) ⊆ σ(Dn) ∪ {0}. Let v = [1, . . . , 1]t/
√

n be a

unit vector, then v∗Dj
nv = 0 for all j = 1, . . . , n − 1. Hence V k(Dn) = σ(Dn) ∪ {0}.

Now, suppose n = 2k and z ∈ V k(Dn). We continue to assume that v is a unit vector such that

v∗Dj
nv = zj for j = 1, . . . , k. Since Dk

n = diag (1,−1, 1,−1, . . . , 1,−1), we see that zk ∈ [−1, 1].
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Thus, z = reiθ for some r ∈ [0, 1] and θ satisfying eikθ ∈ R. Hence, z ∈ ∪n−1
j=0 wj [0, 1]. So, we have

V k(Dn) ⊆ ∪n−1
j=0 wj [0, 1].

We claim that [0, 1] ⊆ V k(Dn). Once this is proved, we can use the fact that Dn is unitarily

similar to wjDn, j = 1, . . . , n − 1, to conclude that
⋃n−1

j=1 wj [0, 1] ⊆ V k(Dn).

To prove our claim, let r ∈ [0, 1]. The result is clear if r = 1. So, assume that r < 1. We will

show that there exists a unit vector v = [
√

t1, . . . ,
√

tn]t with t1, . . . , tn ≥ 0 such that

v∗Dj
nv = rj for j = 1, . . . , k. (3)

Let F ∈ Mn be such that the (p, q) entry of F is w(p−1)(q−1), and let T = [t1, . . . , tn]. Then (3)

holds if and only if

TF = [1, r, · · · , rk, rk+2, . . . , rn]

for some numbers rk+2, . . . , rn. Denote by Fj the jth column of F . Then for j > 1, Fj is the

conjugate of Fn−j+2. As a result, for j ≥ k + 2,

rj = TFj = TFn−j+2 = r̄n−j+1 = rn−j+1.

Note that F−1 = F ∗/n. To finish our proof, we need only to show that for any r ∈ [0, 1), the vector

nT = [1, r, . . . , rk−1, rk, rk−1, . . . , r]F ∗

has nonnegative entries. Now, for j ∈ {1, . . . , n}, let ν = w̄j−1. Then

ntj = [1 r · · · rk−1 rk rk−1 · · · r]F j

= 1 + rν + · · · + (rν)k−1 + (rν)k + (rν̄)k−1 + (rν̄)k−2 + · · · + rν̄

= ξ + ξ̄,

where

ξ = [1 + rν + · · · + (rν)k−1] − (1 − (rν)k)/2

= (1 − (rν)k)(1 − rν)−1 − (1 − (rν)k)/2

= (1 − (rν)k)[(1 − rν)−1 − 1/2]

= (1 − (rν)k)[(1 − rν)−1 − 1/2].

Note that νk ∈ {−1, 1}. Since r ∈ [0, 1), we have 1−(rν)k > 0, and the real part of [(1−rν)−1−1/2]
is

2 − rν − rν̄ − |1 − rν|2
2|1 − rν|2 =

1 − |rν|2
2|1 − rν|2 > 0.

So, our claim is proved. �

Next, we give an analytic description of the set V 2(Dn) using the idea in the proof of [1, Theorem

2.6], which dealt with V 2(D5).
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Theorem 3.2 Let n > 3 and Dn = diag (1, w, . . . , wn−1) with w = ei2π/n.

(a) Suppose n = 2k is even. For j = 1, . . . , k, let Aj = diag (wj , wj+1, wj+k, wj+k+1). Then

conv σ(Aj) is a rectangle, and V 2(Aj) consists of two segments of the rectangular hyperbola passing

through σ(Aj) such that one of them joins wj and wj+1 and the other one joins wj+k and wj+k+1.

Moreover, V 2(A) is the bounded region enclosed by the closed curve
⋃k

j=1 V 2(Aj).

(b) Suppose n = 2k + 1 is odd. For j = 0, 1, . . . , n − 1, let µj be the orthocenter of the

triangle conv {wj , wj+k, wj+k+1}, and let Bj = diag (wj , wj+1, wj+k, wj+k+1). Then conv σ(Bj) is

a trapezoid, and V 2(Bj) consists of two segments of the rectangular hyperbola passing through σ(Bj)

such that one of them joins µj+k+1 and wj+1 and the other one joins wj+k and µj . (Note that

conv {µj+k+1, w
j+1, wj+k, µj} is a rectangle.) Moreover, V 2(A) is the bounded region enclosed by

the closed curve
⋃n−1

j=0 V 2(Bj).

Proof. Suppose n = 2k. Consider the submatrices Aj for j = 1, 2, . . . , k defined as in (a).

Then σ(Aj) determine uniquely a rectangular hyperbola Rj , and σ(A) lies in the closed region

between the two branches of Rj , and so is V 2(A) by [1, Lemma 3.3]. Consequently, V 2(A) lies in

the intersection of these regions, which is the closed bounded region with boundary
⋃k

j=1 V 2(Aj).

By Theorem 2.5, we get the reverse inclusion, namely, the closed bounded region enclosed by the

curve
⋃k

j=1 V 2(Aj) is a subset of V 2(A).

Suppose n = 2k + 1. For j = 0, . . . , n − 1, consider Bj defined as in (b). By Theorem 2.2,

V 2(Bj) has the asserted form, and one can check that
⋃n−1

j=0 V 2(Bj) is a closed curve. Similar to

the proof in case (a), one can show that for each j = 0, . . . , n − 1, σ(Bj) determine uniquely a

rectangular hyperbola R̂j , and that V 2(A) lies in the closed region between the two branches of

R̂j . Thus, V 2(A) lies in the intersection of these regions, which is the closed bounded region with

boundary
⋃n−1

j=0 V 2(Bj). Evidently, the closed bounded region enclosed by the curve
⋃k

j=1 V 2(Bj)

is a subset of V 2(A). The conclusion follows. �

For 3 ≤ k < n/2, we do not have a complete description for V k(Dn). Nevertheless, we have the

following result.

Theorem 3.3 Let Dn = diag (1, w, . . . , wn−1) and F = (w(p−1)(q−1)) ∈ Mn with w = ei2π/n.

Suppose 3 < k < n/2. Then µ ∈ V k(Dn) if and only if there exist complex numbers zk+2, . . . , zn−k

such that zj = z̄n−j+2 and F−1[1, µ, . . . , µk, zk+2, . . . , zn−k, µ̄
k, . . . , µ̄]t is a nonnegative vector.

Proof. Note that for any vector v ∈ R
n, if Fv = [z1, . . . , zn]t then zj = z̄n−j+2 for j = 2, . . . , n.

Consequently, (µ, . . . , µk) ∈ W (Dn,D2
n, . . . ,Dk

n) if and only if there is nonnegative vector v and

complex numbers zk+2, . . . , zn−k such that Fv = [1, µ, . . . , µk, zk+2, . . . , zn−k, µ̄
k, . . . , µ̄]t, which is

the desired conclusion. �

Let us depict the boundary of V 2(D8), and the sets V 3(D8) and V 4(D8). For comparison

purpose, we also put the V 2(D8) and V 3(D8) in the same frame so as to illustrate that V 3(D8) is

a proper subset of V 2(D8).
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The boundary of V 2(D8). The set V 3(D8).

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The set V 4(D8). The boundary of V 2(D8) and the set V 3(D8).

It would be nice to give an analytic description of V k(Dn) for 3 ≤ k < n/2.

In the proof of Theorem 3.2, we use at most n 4-by-4 submatrices instead of
(n
4

)

4-by-4 subma-

trices to determine V 2(Dn). In general, it is natural to ask the following:

Question Can we use a (small) sub-collection of 4-by-4 submatrices to determine V 2(A) for diag-

onal matrices A, instead of all the
(n
4

)

of them?

4 Matrices whose squares are Hermitian

Suppose A ∈ Mn is such that eitA2 is Hermitian for some t ∈ [0, 2π). Then B = eit/2A satisfies B2

is Hermitian. The joint numerical range W (B,B2) lies in C × R ≡ R
3, and it is convex if n ≥ 3.

We can use the theory of joint numerical ranges to characterize V 2(B). We first obtain a canonical

form for those matrices A ∈ Mn such that A2 is Hermitian.

Theorem 4.1 Let A ∈ Mn. Then A2 is Hermitian if and only if A is unitarily similar to a direct
sum of Hermitian matrix, a skew-Hermitian matrix, and 2-by-2 matrices of the form:

(

µ iν
iν −µ

)

with µ, ν > 0. (4)
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Proof. Let A = H + iG so that H = (hij) and G = (gij) are Hermitian. Applying a unitary

similarity to A, we may assume that H = diag (h1, . . . , hn). Then A2 is Hermitian if and only if

HG+GH = 0, which means (gij(hi + hj)) = 0, for all 1 ≤ i, j ≤ n. Consequently, gij = 0 whenever

hi +hj 6= 0. In particular, gjj = 0 whenever hj 6= 0. Assume H = H0⊕H1⊕· · ·⊕Hs⊕0k such that

H0, . . . ,Hs are nonsingular diagonal matrices with disjoint spectra, for j = 0, 1, . . . , s, the spectrum

of Hj equals {µj ,−µj} with µj > 0, and for each eigenvalue λ of H0 ∈ Ml the value −λ is not an

eigenvalue of H. Then G = 0l ⊕G1 ⊕ · · ·Gs ⊕G0 such that G0 ∈ Mk and for each j = 1, . . . , s, the
matrix Hj + iGj has the form

(

µjI iRj

iR∗
j −µjI

)

.

Let Wj = Uj ⊕Vj be such that UjRjV
∗
j has it singular values lying on the diagonal positions. Then

Wj(Hj + iGj)W
∗
j is permutationally similar to a direct sum of 2-by-2 matrices of the form

(

µj iν
iν −µj

)

with ν > 0

and a real scalar matrix if Rj is not a square matrix. Since this is true for every j = 1, . . . , s, the

conclusion follows. �

Using Theorem 4.1, we can prove the following.

Theorem 4.2 Suppose A ∈ Mn is such that A2 is Hermitian. Then V 4(A) = σ(A).

Proof. By Theorem 4.1, we may assume that A = R ⊕ S ⊕ A1 ⊕ · · · ⊕ Ar, where R = R∗, S =

−S∗, A1, A2, . . . , Ar be as in (4). Suppose µ ∈ V 4(A). Then µ2 ∈ R and there is a unit vector

x ∈ C
n such that x∗Ajx = µj for j = 1, . . . , 4. Thus, |x∗A2x|2 = |x∗A4x| = ‖A2x‖2, and hence x is

an eigenvector of A2 such that A2x = µ2x. We need to prove that µ ∈ σ(A). If µ2 is an eigenvalue

of A2
j with j ≥ 1, then ±µ ∈ σ(Aj), and hence µ ∈ σ(A). Suppose it is not the case. Then µ2 is an

eigenvalue of R2 or S2 depending on µ2 > 0 or µ2 < 0. Assume µ2 > 0. If R has both eigenvalues

±µ, then again µ ∈ σ(A). Otherwise, the eigenspace of µ2 of A2 must be the eigenspace of an

eigenvalue of A. Thus, x is a unit eigenvector of A, and hence µ = x∗Ax is an eigenvalue of A. If

µ2 < 0, we can show that µ ∈ σ(S) ⊆ σ(A) by a similar argument. �

To determine V 2(A), we need the following result.

Theorem 4.3 Suppose A ∈ Mn and A2 is Hermitian. Assume that A is unitarily similar to a

direct sum of R = diag (h1, . . . , hp), S = idiag (g1, . . . , gq), and Aj =

(

µj iνj

iνj −µj

)

for j = 1, . . . , r,

such that h1 ≥ · · · ≥ hp, g1 ≥ · · · ≥ gq. Then the joint numerical range W (A, . . . , Am) is convex

for any positive integer m. Moreover, let

Ej = {(x, y, µ2
j − ν2

j ) : x + iy ∈ W (Aj)} = W (ReAj , ImAj, A
2
j ).

Then the joint numerical range W (A,A2) is the convex hull of the set

{(hj , 0, h
2
j ) : 1 ≤ j ≤ p} ∪ {(0, gj ,−g2

j ) : 1 ≤ j ≤ q} ∪ E1 ∪ · · · ∪ Er.
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Proof. Note that every point in W (A,A2, . . . , Am) is a convex combination of elements in

W (R,R2, . . . , Rm), W (S, S2, . . . , Sm), W (A1, A
2
1, . . . , A

m
1 ), . . ., and W (Ar, A

2
r , . . . , A

m
r ). Since R

and S are normal matrices, W (R,R2, . . . , Rm) and W (S, S2, . . . , Sm) are convex. Also, for each

j = 1, . . . r, Ak
j is a multiple of Aj or I. For example, A2

j = γjI, A3
j = γjAj and A4

j = γ2
j I, where

γj = µ2
j − ν2

j . So W (Aj , A
2
j , . . . , A

m
j ) is a convex. Therefore, W (A,A2, . . . , Am) is a convex sum of

points from (r + 2) convex set, and is convex. The second assertion can be easily verified. �

Now, we can characterize V 2(A) for those A ∈ Mn such that A2 is Hermitian.

Theorem 4.4 Suppose A ∈ Mn satisfies the hypotheses of Theorem 4.3. Let K1 be the convex hull
of the union of the sets:

(a.1) {(hj , h
2
j ) : 1 ≤ j ≤ p},

(a.2) {(±µj, µ
2
j − ν2

j ) : 1 ≤ j ≤ r},
(a.3) {(0, g1gq), (0, g̃)} if g1gq ≤ 0, where g̃ = max{gugv : gugv ≤ 0, 1 ≤ u < v ≤ q}.

Let K2 be the convex hull of the union of the sets:

(b.1) {(gj ,−g2
j ) : 1 ≤ j ≤ q},

(b.2) {(±νj , µ
2
j − ν2

j ) : 1 ≤ j ≤ r},
(b.3) {(0,−h1hp), (0,−h̃)} if h1hp ≤ 0, where h̃ = max{huhv : huhv ≤ 0, 1 ≤ u < v ≤ p}.

Then
V 2(A) = {µ ∈ R : (µ, µ2) ∈ K1} ∪ {iµ ∈ iR : (µ,−µ2) ∈ K2} ⊆ R ∪ iR.

Proof. Use the fact that ξ ∈ V 2(A) if and only if (ξ, ξ2) ∈ W (A,A2). Since A2 is Hermitian,

ξ2 ∈ R. Thus, ξ ∈ R ∪ iR.

By Theorem 4.3, W (ReA, ImA,A2) is the convex hull of the set

{(hj , 0, h
2
j ) : 1 ≤ j ≤ p} ∪ {(0, gj ,−g2

j ) : 1 ≤ j ≤ q} ∪ E1 ∪ · · · ∪ Er.

Let P1 = {(µ, 0, µ2) : µ ∈ R} and P2 = {(0, µ,−µ2) : µ ∈ R}. Then {(hj , 0, h
2
j ) : 1 ≤ j ≤ p} ⊆ P1,

{(0, gj ,−g2
j ) : 1 ≤ j ≤ q} ⊆ P2, and E1, . . . , Er are symmetric about the (x, z)-plane and the

(y, z)-plane.

Let S1 be the intersection of W (ReA, ImA,A2) and the (x, z)-plane. Then S1 is the convex hull

of the union of the sets:
(a.1)’ {(hj , 0, h

2
j ) : 1 ≤ j ≤ p},

(a.2)’ {(±µj, 0, µ
2
j − ν2

j ) : 1 ≤ j ≤ r},
(a.3)’ {(0, 0, g1gq), (0, g̃)} if g1gq ≤ 0, where g̃ = max{gugv : gugv ≤ 0, 1 ≤ u < v ≤ q}.

As a result, µ ∈ V 2(A)∩R if and only if (µ, 0, µ2) ∈ P1 ∩W (ReA, ImA,A2) = P1 ∩S1, equivalently,

(µ, µ2) ∈ K1.

Similarly, we can show that iµ ∈ V 2(A) ∩ iR if and only if (µ,−µ2) ∈ K2. �

Using Theorem 4.4, one can recover many known results and obtain new ones. In particular,

the next two examples cover Theorems 2.5 - 2.11 in [1].
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Example 4.5 Let A = diag (h1, h2, h3, i) with h1, h2, h3 ∈ R such that h1 < h2 < h3.

(a) If h1 ≥ 0 or h3 ≤ 0 then V 2(A) = σ(A).

(b) If h1h3 < 0 and for h̃ = max{hrhs : hrhs ≤ 0, 1 ≤ r < s ≤ 3}, then

V 2(A) = σ(A) ∪
{

iγ : |h̃| ≤ γ ≤ min{|h1h3|, 1}
}

.

Consequently, V 2(A) = σ(A) if and only if h2 6= 0 and none of the triangles conv {i, hr , hs}
be an acute angle triangle for any r, s ∈ {1, 2, 3}; otherwise, V 2(A) contains a non-trivial line
segment in iR.

Example 4.6 Let A = diag (h1, h2, i, ig) with h1, h2, g ∈ R \ {0} with h2 < h1 and g < 1.

(a) If {h1h2, g} ⊆ (0,∞), then V 2(A) = σ(A).

(b) If h1h2 < 0 and g < 0, then V 2(A) 6= σ(A) and

V 2(A) = σ(A) ∪
{

γ : γ ∈ [h2, h1] ∩
[−g

h2
,
−g

h1

]}

∪
{

iγ : γ ∈ [g, 1] ∩
[−h1h2

g
,−h1h2

]}

,

which contains non-trivial line segments in R ∪ iR.

(c) If h1h2 < 0 < g, then

V 2(A) = σ(A) ∪
{

iγ : γ ∈ [g, 1] ∩
[

−h1h2,
−h1h2

g

]}

.

Consequently, V 2(A) = σ(A) if and only if ig is the orthocenter of conv {h1, h2, i}. Otherwise,

V 2(A) contains a non-trivial line segment in iR.

Example 4.7 Let A = diag (3,−3, i,−i) ⊕
(

1 1
−1 −1

)

. Then

K1 = conv {(3, 9), (−3, 9), (0,−1), (1, 0), (−1, 0)},

K2 = conv {(1, 1), (−1, 1), (1, 0), (−1, 0)},

and hence
V 2(A) = {−3, 3} ∪ [−3/2, 3/2] ∪ {iγ : γ ∈ [−1, 1]}.

Question Note that it is possible that V 3(A) \ σ(A) can be empty or non-empty. It would be nice

to determine V 3(A) if A2 is Hermitian.
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5 Additional results and remarks

In Section 3, we show that V n−1(Dn) = σ(Dn) ∪ {0}. Here we show that for any normal matrix

A ∈ Mn, the set V n−1(A) is the union of the spectrum and at most one extra point. This conjecture

was introduced to us by Anne Greenbaum via private communication.

Theorem 5.1 Let A ∈ Mn be a normal matrix with n ≥ 3. Then V n−1(A) has at most n + 1
points.

Proof. Let A = diag (a1, a2, . . . , an), where a1, a2, . . . , an are n complex numbers. If ai = aj

for some 1 ≤ i, j ≤ n. Then the degree of the minimal polynomial of A is less than n, and hence

V n−1(A) = σ(A). Also, if a1, a2, . . . , an are collinear, then V n−1(A) = V 2(A) = σ(A). Now, we

assume A has n distinct non-collinear eigenvalues. Let µ ∈ V n−1(A) \ σ(A). We will show that

V n−1(A) = σ(A) ∪ {µ}. Assume if possible µ 6= ν ∈ V n−1(A) \ σ(A). Without loss of generality

(by rotation and translation), we assume that µ = 0 and ν = 1. Let

W :=











1 1 · · · 1
a1 a2 · · · an
...

...
. . .

...

an−1
1 an−1

2 · · · an−1
n











, µ̂ :=











1
0
...
0











and ν̂ :=











1
1
...
1











The matrix W is an invertible Vandermonde matrix. Since µ = 0 and ν = 1 are in V n−1(A),

the equations WX = µ̂ and WX = ν̂ have solutions X1 = [t1, . . . , tn]t and X2 = [s1, . . . , sn]t,

respectively such that ti and si are positive numbers, i = 1, . . . , n. By Cramer’s rule, we know

that tk =
∏n

i=1,i6=k
(ai−0)
(ai−ak) and sk =

∏n
i=1,i6=k

(ai−1)
(ai−ak) . Define f(x) =

∏n
i=1(ai − x), Then 0 <

tk
sk

= (ak−1)f(0)
(ak−0)f(1) . Thus, the argument arg(ak−1

ak
) = arg(f(1)

f(0)) = γ, for all k = 1, . . . , n. Hence,

arg(1 − 1
ai

) = arg(1 − 1
aj

),∀i, j = 1, . . . , n. Since µ = 0 is an interior point of W (A), there exist

1 ≤ i, j ≤ n such that 0 < arg(ai) < π and −π < arg(aj) < 0. Let bl := − 1
al

, l = i, j. It is easy to

see that arg(bi) = π − arg(ai) > 0 and arg(bj) = π − arg(aj) < 0. Therefore, arg(1 + bi) > 0 and

arg(1 + bj) < 0, which is a contradiction. �

Remark 5.2 Let A = diag (a1, a2, . . . , an), where a1, a2, . . . , an are n complex numbers and µ ∈
V n−1(A) \ σ(A). We may assume that µ = 0 by replacing A by A− µI. Then 0 ∈ V n−1(A) \ σ(A)

if and only if tk =
∏n

i=1,i6=k
ai

(ai−ak) , k = 1, . . . , n are positive numbers. In the case n = 3, we know

that 0 is an orthocenter of the triangle generated by {a1, a2, a3}. It would be nice to find some

geometric interpretation for µ = 0, if n > 3. Also it would be interesting to characterize those

normal matrices A ∈ Mn with n distinct eigenvalues such that V n−1(A) = σ(A).

Theorem 5.3 Let A ∈ Mn, and k ∈ {1, . . . , n}. Then µ ∈ V k(A) if and only if (µ, . . . , µk) ∈
conv W (A, . . . , Ak). Moreover, every point (µ, . . . , µk) is a convex combination of no more than m

elements in W (A, . . . , Ak) with m ≤ min{n,
√

2k}.
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Proof. There are nonnegative real numbers t1, . . . , tm summing to 1, and unit vectors x1, . . . , xm

such that

(0, . . . , 0) =
m

∑

j=1

tj

(

x∗
j(A − µI)xj , . . . , x

∗
j (A − µI)kxj

)

if and only if

0 =

m
∑

j=1

tjx
∗
j(A − µI)xj =

m
∑

j=1

tj(x
∗
jAxj) − µ,

0 =
m

∑

j=1

tjx
∗
j(A − µI)2xj =

m
∑

j=1

tj(x
∗
jA

2xj − 2µx∗Ax + µ2) =
m

∑

j=1

tjx
∗
jA

2xj − µ2,

...
...

...
...

0 =

m
∑

j=1

tjx
∗
j(A − µI)kxj = · · · · · · · · · =

m
∑

j=1

tj(x
∗
jA

kxj) − µk.

Thus, the first assertion follows.

Let Aj = Hj + iGj with Hj = (A + A∗
j )/2 for j = 1, . . . , k. By the result in [5], each point in

conv W (H1, G1, . . . ,Hk, Gk) is a combination of no more than m points in W (H1, G1, . . . ,Hk, Gk)

with m = min{n,
√

2k + δn2,2k+1}. The result follows. �

Remark 5.4 By Theorem 5.3, one may consider using the following approaches to study V k(A).

(a) Determine µ ∈ W (A) such that (µ, µ2, . . . , µk) is a convex combination of at most m elements

in W (A, . . . , Ak). [Note that the m elements may not be extreme points of convW (A, . . . , Ak).]

In particular, every (µ, µ2) ∈ conv W (A,A2) is a convex combination of at most two points

in W (A,A2). Thus, one may study V 2(A) by considering those lines joining (x∗Ax, x∗A2x)

and (y∗Ay, y∗A2y) in W (A,A2).

(b) Use the fact that µ /∈ V k(A) if and only if (µ, µ2, . . . , µk) /∈ conv W (A,A2, . . . , Ak). For

j = 1, . . . , k, let Aj = Hj + iGj , where Hj, Gj are Hermitian. Then the condition is equiva-

lent to the fact the linear span of {H1−Re(µ)I,G1−Im(µ)I, . . . ,Hk−Re(µk)I,Gk−Im(µk)I}
contains a positive definite matrix. This condition can be readily checked by positive semidef-
inite programming. Alternatively, one can check whether the largest eigenvalue of a linear

combination of H1 − Re(µ)I,G1 − Im(µ)I, . . . ,Hk − Re(µk)I,Gk − Im(µk)I is negative.

(c) If A is normal with eigenvalues a1, . . . , an, we need to check whether

(0, . . . , 0) ∈ conv
{(

(aj − µ), . . . , (aj − µ)k
)

: 1 ≤ j ≤ n
}

,

equivalently,

(µ, µ2, . . . , µk) ∈ conv {(aj , . . . , a
k
j ) : 1 ≤ j ≤ n}.

This condition can be checked by standard linear programming package.

[In fact, this is how we generate V 3(D8) in Section 3.]
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Question Can we determine V k(A) analytically for special classes of matrices A?

Some techniques in the previous sections can be further exploited. Here are two observations,
which can be easily verified.

Theorem 5.5 Let A ∈ Mn and k ∈ {2, . . . , n}.

1) If Ak is Hermitian, then V k(A) ⊆ {µ ∈ C : µk ∈ R}.

2) Let k ≥ n/2 and A ∈ Mn such that W (A,A2, . . . , Ak) is convex and Ak = α(A∗)n−k, where

α ∈ C. Then V k(A) ⊆ {reiθ : r ≥ 0, r2k−neinθ = α}.
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