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Abstract

Two issues concerning the construction of square matrices with prescribed singular
values and eigenvalues are addressed. First, a necessary and sufficient condition for the
existence of an n × n complex matrix with n given nonnegative numbers as singular
values and m(≤ n) given complex numbers to be m of the eigenvalues is determined.
This extends the classical result of Weyl and Horn treating the case when m = n.
Second, an algorithm is given to generate a triangular matrix with prescribed singular
values and eigenvalues. Unlike earlier algorithms, the eigenvalues can be arranged in
any prescribed order on the diagonal. A slight modification of this algorithm allows
one to construct a real matrix with specified real and complex conjugate eigenvalues
and specified singular values. The construction is done by multiplication by diagonal
unitary matrices, permutation matrices and rotation matrices. It is numerically stable
and may be useful in developing test software for numerical linear algebra packages.

Keywords: Singular value, Eigenvalue, Majorization
AMS(MOS) subject classification: 15A18, 15A99

1 Introduction

A classical result of Weyl [9] and Horn [5] completely determines the relations between the
singular values and eigenvalues of an n× n complex matrix as follows.

Theorem 1.1 There exists an n× n complex matrix with singular values s1 ≥ · · · ≥ sn ≥ 0
and eigenvalues λ1, . . . , λn ∈ C such that |λ1| ≥ · · · ≥ |λn| if and only if |∏n

j=1 λn| =
∏n

j=1 sj

and for k = 1, . . . , n− 1,
k∏

j=1

|λj| ≤
k∏

j=1

sj. (1.1)
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The necessity proof can be done by first establishing the basic result:
If Ax = λx for some unit vector x, then

|λ| = ‖λx‖ = ‖Ax‖ ≤ max{‖Ay‖ : ‖y‖ = 1} = s1;

and then apply the result to the compound matrices Ck(A) for k = 1, . . . , n (see [7, 9.E.1]

[2, II.3.6]). Alternatively, one can use the Schur triangular form (see [6, Theorem 3.3.2]).

The sufficiency part is usually not presented in textbooks ([2, 5, 7]). A. Horn’s original
proof was by induction, and proved the special case where λi 6= 0 for all i first, and then
extended it to the general case using an idea of Kaplansky [5]. Horn’s algorithm always
generated a matrix with diagonal entries ordered in decreasing absolute value.

In this note, two issues concerning the construction of square matrices with prescribed
singular values and eigenvalues are addressed. First, in Section 2, we give a necessary and
sufficient condition for the existence of an n × n complex matrix with n given nonnegative
numbers as singular values and m(≤ n) given complex numbers to be m of the eigenvalues.
This extends the classical result of Weyl and Horn.

Second, in Section 3, we present an algorithm for generating a triangular matrix with
prescribed singular values and prescribed eigenvalues. Unlike earlier algorithms the eigen-
values can be arranged in any specified order on the diagonal. In principle, once one has
a triangular matrix with the desired singular values and eigenvalues (in any order on the

diagonal) one can then use an eigenvalue reordering algorithm to put the eigenvalues in any
desired order. However, these algorithms are rather complicated to implement accurately–see
[3] for the details. Our construction is done by multiplication by unitary diagonal matrices,
permutation matrices and rotation matrices. It is numerically stable. This allows one to
generate matrices with prescribed singular values and eigenvalues which may be useful in
testing numerical linear algebra packages.

In Section 4, we show how extend the ideas in Section 3 to construct a real matrix with
specified real and complex conjugate eigenvalues and specified singular values, and in Section
5 we briefly compare our work with two other papers. A Matlab program implementing our
algorithm is available at http://www.math.wm.edu/̃ mathias/evsv.html.

2 An Extension of the Result of Weyl and Horn

Theorem 2.1 Let 1 ≤ m ≤ n. Suppose the nonnegative numbers s1 ≥ · · · ≥ sn ≥ 0 and
complex numbers λ1, . . . , λm are given such that |λ1| ≥ · · · ≥ |λm|. The following conditions
are equivalent.

(a) There exists an n×n complex matrix with s1, . . . , sn as singular values and λ1, . . . , λm

as m of the eigenvalues.
(b) There exists an n× n complex matrix with singular values s1, . . . , sn and eigenvalues

λ1, . . . , λm, γ, . . . , γ︸ ︷︷ ︸
n−m

, where

γ =

{
0 if λm = 0,∣∣∣(∏n

j=1 sj/
∏m

j=1 λj)
∣∣∣1/(n−m)

otherwise.
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(c)
∏k

j=1 sn−j+1 ≤
∏k

j=1 |λm−j+1| and
∏k

j=1 |λj| ≤
∏k

j=1 sj for all k = 1, . . . ,m.

Proof. The implication (b) ⇒ (a) is clear. The implication (a) ⇒ (c) follows from the

result of Weyl [9]. It remains to prove (c) ⇒ (b). If m = n, the result reduces to Theorem
1.1. Thus, we assume that m < n.

Consider the vector v = (λ1, . . . , λm,
︷ ︸︸ ︷
γ, . . . , γ

n−m
), where γ is defined as in the theorem.

Clearly, the product of the entries of v is the same as
∏n

j=1 sj by construction. Using the

result of Horn [5] (see also [7, 9.E.2]), we need only to show that for k = 1, . . . , n − 1, the

magnitude of the product of any k entries of v is bounded by below by
∏k

j=1 sn−j+1 and

above by
∏k

j=1 sj. If λm = 0 = γ, then sn = 0 and the result can be readily verified. So, we

assume that λm, γ and sn are all nonzero.
Let us address the upper bound. Our proof is by contradiction. Take 1 ≤ k < n. Let

γq ∏p
j=1 |λj| be the product of the absolute values of the k entries in v with largest magnitudes,

where k = p + q. We claim that it is not larger than
∏k

j=1 sj. If it is not true, then

q ln γ +
p∑

j=1

ln |λj| >
k∑

j=1

ln sj. (2.1)

Since the absolute value of the product of the entries of v equals
∏n

j=1 sj > 0, we also have

(n−m− q) ln γ +
m∑

j=p+1

ln |λj| <
n∑

j=k+1

ln sj. (2.2)

By (c), we have
m−p∑
j=1

{ln |λn−j+1| − ln sm−j+1} ≤ 0 (2.3)

and
p∑

j=1

{ln |sj| − ln |λj|} ≥ 0. (2.4)

Let α be the average of the numbers ln sk+1, . . . , ln sn−m+p, and let β be the average of

ln sp+1, . . . , ln sk. Then since the si are non-increasing, α ≤ sk+1 ≤ sk ≤ β. However, using

(2.2) and (2.1) for the strict inequalities, and (2.3) and (2.4) for the weak inequalities we
obtain the contradiction α > β:

α = (
n−m+p∑
j=k+1

ln sj)/(n−m− q)

= (
n∑

j=k+1

ln sj −
n∑

j=n−m+p+1

ln sj)/(n−m− q)
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≥ (
n∑

j=k+1

ln sj −
m∑

j=p+1

ln |λj|)/(n−m− q)

> ln γ

> (
k∑

j=1

ln sj −
p∑

j=1

ln |λj|)/q

≥ (
k∑

j=1

ln sj −
p∑

j=1

ln sj)/q

= (
k∑

j=p+1

ln sj)/q

= β.

Similarly, we can show that the product of the absolute values of the k entries in v with

smallest magnitudes is bounded below by
∏k

j=1 sn−j+1, as required. 2

Bebiano, Li and da Providencia have given necessary and sufficient conditions for the
existence of a complex n × n Hermitian (real symmetric) matrices to have n prescribed

eigenvalues and k (with k < n) prescribed diagonal entries (see the proof of [1, Theorem

2.4]). Tam studied the necessary and sufficient conditions relating the n singular values and

the first k (≤ n) diagonal entries of an n× n general or symmetric matrix over R or C. He

also studied the conditions on the singular values and the (1, k + 1), (2, k + 2), . . . , (k, 2k)

entries of a skew-symmetric matrix over R or C [8].

3 Our Construction

Let x and y be two nonnegative real vectors with n entries. We say that x is log majorized
by y, denoted by x≺log y, if the product of the k largest entries of x is not larger than that

of y for k = 1, . . . , n, and the products are equal when k = n.
Suppose (1.1) holds, and that equality holds when k = n, i.e.,

(|λ1|, . . . , |λn|)≺log (s1, . . . , sn). (3.1)

We shall construct a triangular matrix with diagonal entries |λi|’s and then multiply it by a

suitable diagonal matrix diag(eit1 , . . . , eitn) to get the desired matrix.

Suppose we want to have |λj| at the (1, 1) entry of the resulting triangular matrix. We

derive a basic procedure to construct a lower triangular matrix A such that:

1. σ(A) = (s1, . . . , sn),

2. the (1, 1) entry of A equals |λj|,

3. removing the first row and the first column of A results in a matrix in diagonal form, say,
diag(y1, . . . , yn−1), such that

(|λ1|, . . . , |λj−1|, |λj+1|, . . . , |λn|)≺log (y1, . . . , yn−1).
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Once this is done, we can focus on the (n− 1)× (n− 1) submatrix of A in the bottom right
corner and apply the basic procedure to it. Then we get a triangular matrix with the desired
(1, 1), (2, 2) entries, and the prescribed singular values, whose (n − 2) × (n − 2) submatrix
in the bottom right corner is in diagonal form that allows one to repeat the basic procedure.
After (n− 1) steps one will get the required matrix.

The construction is rather detailed and the reader may loose sight of the goal. So we
first point out the key ideas that ensure that the conditions (1) – (3) are satisfied. In every
case the matrix A is obtained from

S = diag(s1, . . . , sn)

by multiplication of permutation matrices and (2× 2) orthogonal matrices. This guarantees

(1). The condition (2) is ensured by finding an explicit formula to solve the 2 × 2 case at

the left top corner of S (or a modified S) so that |λj| will lie at the (1, 1) position in the

resulting matrix. To achieve that, we often have to permute the diagonal of S so that |λj|
lies between the first two diagonal elements of S. There may well be many ways to do this,
but not every one of these results in a matrix that satisfies condition (3). One simple way

to ensure that (3) is satisfied is to permute sk−1 and sk to the top where k is chosen so that

sk−1 ≥ |λj| ≥ sk.

To obtain the matrix satisfying (1) – (3), we consider 2 cases, each of which is divided
into two subcases.

Case 1. Assume that λj = 0. Then sn = 0 and we may assume that j = n. Let P be a

permutation matrix such that PSP t has sn and sn−1 at the (1, 1) and (2, 2) position. Now
consider two subcases:
(a) If λn−1 = 0, interchange the first two columns of PSP t to obtain A. (This interchange
is of vital importance when sn−1 6= 0. It makes no difference whether we do it or not when

sn−1 = 0.)

(b) If λn−1 6= 0, multiply the first two columns of PSP t on the right by W to obtain A,
where

W =
(

cos w sin w
− sin w cos w

)
, cos w =

|λ1 · · ·λn−1|
s1 · · · sn−1

.

One easily checks that (1) – (3) hold.

Case 2. Assume that λj 6= 0. Note that s1 ≥ |λ1| ≥ |λj|. If λn = 0, then sn = 0 and

|λj| > sn. If λn 6= 0, then (3.1) implies that sn ≤ |λn| ≤ |λj|. Consequently, either

(a) |λj| = sk for some 1 ≤ k ≤ n, or

(b) there exists k with 1 ≤ k < n such that sk−1 > |λj| > sk.

If (a) holds, let P be a permutation so that A = PSP t has sk in its (1,1) position. Then

clearly A satisfies (1) – (2), and the (n− 1)× (n− 1) submatrix in the right bottom corner

of A is in diagonal form, say, diag(y1, . . . , yn−1). To verify (3), let a(r) be the product of

the r largest entries of (|λ1|, . . . , |λj−1|, |λj+1|, . . . , |λn|) and let b(r) be the product of the r

largest entries in (y1, . . . , yn−1). It is clear that a(n− 1) = b(n− 1).
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Suppose r < j. Then a(r) =
∏r

i=1 |λi|. If r < k, then b(r) =
∏r

i=1 si ≥ a(r) by (3.1).

Suppose k ≥ r. Since j ≥ r + 1, we have |λr+1| ≥ |λj| and hence by (3.1),

b(r) =
r+1∏
i=1

si/sk =
r+1∏
i=1

si/|λj| ≥
r+1∏
i=1

si/|λr+1| ≥ a(r).

Next, assume r ≥ j. Then a(r) =
∏r+1

i=1 |λi|/|λj|. Suppose r < k. Since r ≥ j, we have

|λj| ≤ |λr+1| and hence by (3.1),

b(r) =
r∏

i=1

si ≥
r∏

i=1

|λi| ≥ a(r).

If k ≤ r, then b(r) =
∏r+1

i=1 si/sk =
∏r+1

i=1 si/|λj| ≥ a(r) by (3.1).

Now suppose (b) holds. Let P be a permutation matrix so that PSP t has sk and sk−1 in

the (1, 1) and (2, 2) positions. Let U =
(

cos u − sin u
sin u cos u

)
and V =

(
cos v sin v
− sin v cos v

)
so that

cos u =

√√√√s2
k−1 − |λj|2
s2

k−1 − s2
k

, sin u =

√√√√ |λj|2 − s2
k

s2
k−1 − s2

k

,

cos v =
sk

|λj|
cos u =

sk

|λj|

√√√√s2
k−1 − |λj|2
s2

k−1 − s2
k

, sin v =
sk−1

|λj|
sin u =

sk−1

|λj|

√√√√ |λj|2 − s2
k

s2
k−1 − s2

k

.

Then

U
(

sk 0
0 sk−1

)
V =

( |λj| 0
∗ t

)
, t = sksk−1/|λj|.

Multiply the first and second rows of PSP t by U , and then multiply the first and second
columns by V to obtain A. The resulting matrix with have |λj| and t in its (1, 1) and (2, 2)

positions. Clearly, A satisfies (1) – (2) and the (n−1)×(n−1) submatrix in the right bottom

corner is in diagonal form, say, diag(y1, . . . , yn−1). To verify (3), let a(r) be the product of

the r largest entries of of (|λ1|, . . . , |λj−1|, |λj+1|, . . . , |λn|) and let b(r) be the product of the

r largest entries in (y1, . . . , yn−1). It is clear that a(n− 1) = b(n− 1).

Suppose r < j. Then a(r) =
∏r

i=1 |λi|. If r < k − 1, then b(r) =
∏r

i=1 si ≥ a(r) by (3.1).

Suppose k − 1 ≥ r. Since j ≥ r + 1, we have |λr+1| ≥ |λj| and hence by (3.1),

b(r) =
r+1∏
i=1

si/|λj| ≥
r+1∏
i=1

si/|λr+1| ≥ a(r).

Next, assume r ≥ j. Then a(r) =
∏r+1

i=1 |λi|/|λj|. Suppose r < k − 1. Since r ≥ j, we

have |λj| ≤ |λr+1| and hence by (3.1),

b(r) =
r∏

i=1

si ≥
r∏

i=1

|λi| ≥ a(r).
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If k − 1 ≤ r, then b(r) =
∏r+1

i=1 sj/|λj| ≥ a(r) by (3.1). 2

As mentioned before in the introduction, if the data are real our construction will produce
a real matrix satisfying the requirement. If λ1 = · · · = λn ≥ 0, one can actually construct a
nonnegative lower triangular matrix with the desired property.

Below we describe an algorithm to construct a lower triangular matrix A with prescribed
singular values s1, . . . , sn, and diagonal entries (x1, . . . , xn), where xi = |λji

| for a permu-

tation (j1, . . . , jn) of (1, . . . , n). Notice that on any particular iteration one will perform
exactly one of the steps 2a, 2b, 2c and 2d, and that these four steps correspond to the four
cases in the constructive proof in the previous section. In step 1 we denote the last n− r +1
diagonal entries of Ar−1 by yi, i = 1, . . . , n− r +1. This is merely for notational convenience
in the rest of the algorithm.

An Algorithm

Step 0. Set r = 1 and A0 = diag(sn, . . . , s1).

Step 1. If r = n, stop. Otherwise, set yn−i+1 = (Ar)ii for i = r + 1, . . . , n and determine the
smallest integer k ≥ r so that

xr ≥ yk.

Step 2a. If 0 = xr and there exists j > r such that xj = 0, interchange the r and (r + 1)st

columns of Ar−1 to obtain Ar; set r = r + 1 and go to Step 1.

Step 2b. If 0 = xr and no other xj with j > r equal to 0, obtain Ar from Ar−1 by changing

its (r, r), (r, r + 1), (r + 1, r), (r + 1, r + 1) entries to

0, 0,
√

y2
n−r − t2, t,

where t = (xr+1 · · ·xn)/(yn−r−1 · · · y1); set r = r + 1 and go to Step 1.

Step 2c. If 0 < xr = yk apply a permutation to the rows and to the columns, accordingly, of
Ar−1 to obtain Ar so that the last n− r − 1 diagonal entries of Ar equal

yk, yn, . . . , yk+1, yk−1, . . . , yr;

set r = r + 1 and go to Step 1.

Step 2d. Otherwise, apply a permutation to the rows and to the columns, accordingly, of

Ar−1 to obtain Ãr with yk and yk−1 as its (r, r) and (r+1, r+1) entries. If r > 1, multiply

the 2 × (r − 1) submatrix of Ãr lying in the r and (r + 1)st rows and the first (r − 1)

columns by U =
(

cos u − sin u
sin u cos u

)
, where

cos u =

√√√√y2
k−1 − x2

r

y2
k−1 − y2

k

, sin u =

√√√√ x2
r − y2

k

y2
k−1 − y2

k

.
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Set the (r, r), (r, r + 1), (r + 1, r), (r + 1, r + 1) entries of the resulting matrix to

xr, 0,
√

(y2
k−1 − x2

r)(x
2
r − y2

k)/xr, yk−1yk/xr,

respectively. Then obtain Ar from the resulting matrix by permuting the last n− r rows
and columns, accordingly, so that the last n− r diagonal entries are in ascending order.
Set r = r + 1 and go to Step 1.

4 Real Matrices with Complex Eigenvalues

Chu mentions that the construction of a real matrix with prescribed singular values and com-
plex eigenvalues occuring in conjugate pairs is an open problem [4]. This is a a very natural
question when constructing matrices to test numerical software. We provide a construction
using a slight modification of the ideas in the previous section. Note that we are able to
maintain a block triangular structure, and control the order of the eigenvalues appearing as
the eigenvalues of the 1× 1 and 2× 2 diagonal blocks of the resulting matrix.

Theorem 4.1 Let s1 ≥ · · · ≥ sn ≥ 0 and λ1, . . . , λn ∈ C be given such that the non-real com-
plex numbers in λ1, . . . , λn occur in conjugate pairs. Suppose (|λ1|, . . . , |λn|)≺log (s1, . . . , sn),

and (i1, . . . , in) is a permutation of (1, . . . , n) such that complex conjugate pairs occur in con-
secutive positions in λi1 , . . . , λin. Then there exists a real lower block matrix A with singular
values s1, . . . , sn, and λi1 , . . . , λin as the eigenvalues of the 1 × 1 and 2 × 2 diagonal blocks
of A in the specified order.

Proof. We prove the result by induction on n. The result is trivial when n = 1. Suppose
n ≥ 2 and that the result is true for dimensions lower than n.

If λi1 is real, then using the method in Section 3, we can construct a real matrix

B =
( |λi1| 0

∗ D

)
,

where D is a diagonal matrix with diagonal entries y1 ≥ · · · ≥ yn−1 ≥ 0 so that

(|λi2 |, . . . , |λin|)≺log (y1, . . . , yn−1).

By the induction assumption, there exist real orthogonal matrices U1, V1 such that U1DV1

is in lower block triangular form with λi2 , . . . , λin as the eigenvalues of the 1 × 1 and 2 × 2

diagonal blocks of U1DV1 in the specified order. Let U = [1]⊕ U1 and V = [µ]⊕ V1 so that

µ = ±1 satisfying µ|λi1| = λi1 . Then A = UBV is the desired matrix.

Suppose λi1 = λ̄i2 = a + ib, where a, b ∈ R with b 6= 0. If n = 2, then s1s2 = |λ1λ2|.
Since s2 ≤ |λ1| = |λ2| ≤ s1, we have s2

1 + s2
2 ≥ |λ1|2 + |λ2|2. Consider the family of matrices

A(r) =
(

a b/r
−br a

)
, r > 0.
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Evidently, each A(r) has eigenvalues a+ ib and a− ib. If s1(r) ≥ s2(r) are the singular values

of A(r), then

s1(r)
2 + s2(r)

2 = trA(r)A(r)t = 2a2 + (rb)2 + (b/r)2.

Since s2
1 + s2

2 ≥ 2(a2 + b2) = s1(0)2 + s2(0)2, and limr→∞ s1(r)
2 + s2(r)

2 = ∞, there exists r0

such that s1(r0)
2 + s2(r0)

2 = s2
1 + s2

2. One readily checks that A(r0) has singular values s1

and s2. Consequently, there are real orthogonal matrices U and V such that

U
(

s1 0
0 s2

)
V T = A(r0).

One can obtain explicit formulae for r0 and U and V . We do not do this in the interests of
brevity.

Now suppose n ≥ 3. Since s1s2 ≥ |λi1λi2| ≥ sn−1sn, one can find the largest integer

k with 1 ≤ k < n such that sksk+1 ≥ |λi1λi2 |. We consider two cases — k = n − 1 and
k < n− 1.

If k = n− 1, we have |λi1λi2| = sn−1sn. Using the construction in the case n = 2 we can
construct a real 2 × 2 matrix A1 with singular values sn−1, sn and eigenvalues λi1 , λi2 . It is
almost immediate that

(|λi3|, . . . , |λin|)≺log (s1, . . . , sn−2).

So by the induction assumption, there exists a lower block triangular matrix A2 with singular
values s1, . . . , sn−2 and λi3 , . . . , λin as eigenvalues of the 1 × 1 and 2 × 2 diagonal blocks of
A2 in the specified order. The matrix A = A1 ⊕A2 has the desired eigenvalues and singular
values.

If k < n − 1, let y = sksk+1sk+2/|λi1λi2 |, and let z = sksk+2/y. By the case n = 2 in
Section 3, there are real orthogonal matrices U and V such that

(
1 0
0 U

)  sk+1 0 0
0 sk 0
0 0 sk+2

 (
1 0
0 V T

)
=

 sk+1 0 0
0 z 0
0 ∗ y

 .

Now notice that sk+1z = |λi1λi2|. So, by the case n = 2 just proved, there are real orthogonal
matrices U1 and V1 such that

(
U1 0
0 1

)  sk+1 0 0
0 z 0
0 ∗ y

 (
V T

1 0
0 1

)
=

 a b/r0 0
−br0 a 0
∗ ∗ y

 ≡ B.

This matrix has λi1 and λi2 as the eigenvalues of its leading 2 × 2 block, and has singular
values sk, sk+1, sk+2.

Now let R = B ⊕ diag(s1, . . . , sk−1, sk+3, . . . , sn). The trailing (n− 2)× (n− 2) principal
submatrix of R is

D̃ = diag(y, s1, . . . , sk−1, sk+3, . . . , sn).

We need to show that the singular values of D̃ majorize |λi3 |, . . . , |λin|. Clearly, the product

of the singular values of D̃ equals
∏n

j=3 |λij |. Suppose 1 ≤ m < n− 2, and let µ1, . . . , µm be
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any m numbers chosen from |λi3 |, . . . , |λin|. We must show that the the product of the largest
m numbers from s1, . . . , sk−1, y, sk+3, . . . , sn is as least as large as

∏m
j=1 µj. If m ≤ k − 1,

then clearly
∏m

j=1 µj ≤
∏m

j=1 sj. If k − 1 < m, then

|λi1λi2|
m∏

j=1

µj ≤
m+2∏
j=1

sj

and hence

m∏
j=1

µj ≤
1

|λi1λi2|

m+2∏
j=1

sj = (
k−1∏
j=1

sj)
sksk+1sk+2

|λi1λi2 |
(

m∏
j=k+3

sj) = (
k−1∏
j=1

sj)y(
m∏

j=k+3

sj).

This establishes the required majorization. By the induction assumption, there exist uni-

tary matrices U2, V2 such that U2D̃V T
2 is a lower block triangular matrix with eigenvalues

λi3 , . . . , λin arising from the 1×1 and 2×2 diagonal blocks of A in the specified order. Now,

A = (I2⊕U2)R(I2⊕V T
2 ) is a block lower triangular matrix with the desired eigenvalues and

singular values. 2

One may wonder about the existence of a real matrix with all singular values and some
eigenvalues prescribed. We have the following result.

Corollary 4.2 Suppose 1 ≤ m ≤ n. Let s1 ≥ · · · ≥ sn ≥ 0 and the complex numbers
λ1, . . . , λm are given. Let µ1, . . . , µr be the smallest collection of complex numbers such
that the non-real complex numbers in λ1, . . . , λm, µ1, . . . , µr occur in conjugate pairs. The
following condition are equivalent.

(a) There exists a real matrix A with singular values s1, . . . , sn and λ1, . . . , λm as m of the
eigenvalues.

(b) m+r ≤ n and there exist a real matrix with singular values s1, . . . , sn, and eigenvalues
λ1, . . . , λm, µ1, . . . , µr, γ, . . . , γ︸ ︷︷ ︸

n−m−r

, where

γ =

{
0 if

∏m
i=1 λi = 0,{∏n

j=1 sj/
∣∣∣(∏m

i=1 λi)(
∏r

j=1 µj)
∣∣∣}1/(n−m−r)

otherwise .

(c) m + r ≤ n, and for any 1 ≤ k ≤ m + r the product of any k numbers from

|λ1|, . . . , |λm|, |µ1|, . . . , |µr|

lies in the interval
[∏k

j=1 sn−j+1,
∏k

j=1 sj

]
.

10



5 Relation to other research

Smoktunowicz and Aleksiejczyk showed how to construct an upper triangular matrix with
singular values whose product is 1, and whose eigenvalues are all 1. Chu [4], independently
of our work, showed how to construct a matrix with specified singular values and eigenvalues
that satisfy (1.1). His algorithm produces a matrix that is permutation similar to a triangular
matrix, however his algorithm does not allow one to specify the order of the eigenvalues on
the diagonal. The first version of our paper was motivated by the work of Smoktunowicz and
Aleksiejczyk and was independent of Chu’s work. We were informed of [4], and so added
Section 4 where we show how to construct a real matrix with specified real and complex
conjugate eigenvalues and specified singular values, to answer a open problem mentioned by
Chu.

Acknowledgment
This research was motivated by a poster by Alicja Smoktunowicz and Marek Aleksiejczyk,

displayed in the SIAM Applied Linear Algebra Conference in Snowbird, 1997, on the con-
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A Matlab Program (appended in case the editor or referee are interested)

function [a] = ev_sv(e,s)

n = length(e);

s = sort(s);

a = diag(s);

nzeros = n - sum(sign(s));

sum_correction = 0;

if max(or(e~=abs(e), s~=abs(s))), ’sorry e s must be nonneg’, return, end

temp = min(log(cumprod(sort(e))./cumprod(s)))

if temp < -2e-16*n*max(s), ’sorry majorization not satsified’, return, end

for i = 1:n-1,

posn = i;

for j = i:n-1, if a(j,j) <= e(i), posn = j; end, end

j = posn;

correction = max([ (a(j,j)-e(i)) 0]);

if correction > 0,’j’, [j a(j,j) e(i)], a, end

a(j,j) = min([a(j,j) e(i)]);

sum_correction = correction + sum_correction;

correction = max([ (e(i)-a(j+1,j+1)) 0]);

if correction > 0,’j+1’, [a(j+1,j+1) e(i)], end

a(j+1,j+1) = max([a(j+1,j+1) e(i)]);

sum_correction = correction + sum_correction;

perm = [1:i-1, posn, posn+1];

for j = i:n,

if (j ~= posn) & (j ~= posn+1); perm=[perm j]; end

end

a = a(perm, perm);

if e(i) ~=0,

ee = e(i); s1 = a(i+1,i+1); s2 = a(i,i); U = eye(2);

if (s2^2 - s1^2)~=0

cu = sqrt((s1^2-ee^2)/(s1^2 - s2^2));

su = sqrt((ee^2-s2^2)/(s1^2 - s2^2));

U = [-cu su; su cu];

end

a(i:i+1, :) = U*a(i:i+1, :) ;

if abs(a(i, i+1)) > abs(a(i,i)),

a(:, i:i+1) = a(:, [i+1, i]);

end

tangent = a(i, i+1)/a(i,i);

cosine = 1/sqrt(1+tangent^2);

sine = cosine*tangent;

V = [cosine sine; -sine cosine];

a(:, i:i+1) = a(:, i:i+1)*V’;

a(i, i+1) = 0;
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a(:,i) = sign(a(i,i))*a(:,i);

a(i+1,i+1) = abs(a(i+1,i+1));

else

if nzeros == 1

if (prod(sign(e(i+1:n)))==0)

V = [ 0 1; 1 0];

a(:, i:i+1) = a(:, i:i+1)*V;

a(i+1, i+1) = abs(a(i+1, i+1));

nzeros = nzeros + 1;

else

f = prod(e(i+1:n))/prod(diag(a(i+2:n,i+2:n)));

a(i+1, i) = sqrt(a(i+1,i+1)^2 - f^2);

a(i+1, i+1) = f;

end

end

nzeros = nzeros - 1;

end

[jnk indx] = sort(diag(a(i+1:n, i+1:n)));

perm = [1:i (indx’ + i*ones(size(indx’))) ];

a = a(perm, perm);

end

if sum_correction > 2e-16*n*max(s), ’warning’, sum_correction, end
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