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Abstract
Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear

operators on H. For c = (c1, . . . , ck), where c1 ≥ · · · ≥ ck > 0, and p ≥ 1, define the

(c, p)-norm of A ∈ B(H) by

‖A‖c,p =

(
k∑

i=1

cisi(A)p

)1/p

,

where si(A) denotes the ith s-numberof A. In this paper we study some basic properties of
this norm and give a characterization of the extreme points of its closed unit ball. Using
these results, we obtain a description of the corresponding isometric isomorphisms on B(H).
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1 Introduction

Let H be a Hilbert space over C and let B(H) be the algebra of all bounded linear operators

on H. When H is of finite dimension n, we shall identify B(H) with Mn, the algebra of all
n×n complex matrices. In the last few decades, there has been very interesting development
in the theory of unitarily invariant norms and symmetrically norm ideals on B(H), see e.g.

[2, 4, 5, 7, 12, 15, 16, 17, 19] and their references. We give some brief background in the
following.

For a compact operator A ∈ B(H), the ith s-number (or singular value) of A is the

i-th largest eigenvalue of |A| = (A∗A)1/2, where each eigenvalue repeats according to its
multiplicity. If necessary, the numbers will be appended by 0’s to form an infinite sequence.
The ith s-number of A will be denoted by si(A). Let Φ be a symmetric gauge function on

Rdim H . (We refer readers to [7] and [17] for the basic definitions and properties.) Then
Φ determines a symmetric norm ideal CΦ of compact operators by decreeing A ∈ CΦ if
Φ({si(A)}) < ∞. Norm ideals of this type include the Schatten class and the Hilbert-Schmidt

class. Moreover, ‖A‖Φ = Φ({si(A)}) is a complete norm on CΦ, which is unitarily invariant

in the sense that ‖UAV ‖Φ = ‖A‖Φ for any unitary operators U and V . In particular, when
dim H = n < ∞, every symmetric gauge function defines a unitarily invariant norm on Mn.
The algebras CΦ and Mn under these norms have been studied extensively as mentioned
before. In particular, an important topic is to describe isometric isomorphisms under these
norms. In most cases, they are multiplication by unitary operators, possibly followed by
transposition (see [1, 8, 13, 14, 20]).

In view of the success in the study of unitarily invariant norms on compact operators,
there has been attempts to extend the results to bounded operators in B(H) that are not
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necessarily compact. A first step in this direction is to extend the definition of s-number,
and it can be done as follows. For A ∈ B(H), let s∞(A) denote the essential norm of A.

Then s∞(A) is either an accumulation point of σ(|A|) or an eigenvalue of |A| of infinite

multiplicity. The operator A is compact if and only if s∞(A) = 0. Every element of σ(|A|)
exceeding s∞(A) is an eigenvalue of |A| of finite multiplicity. The s-numbers of A is defined

to be the eigenvalues s1(A) ≥ s2(A) ≥ · · · of |A|, where each of them repeats according

to its multiplicity. If there are only finitely many of them, we put si(A) = s∞(A) for the

remaining i’s. Alternatively, one has si(A) = inf {‖A−X‖ : X ∈ B(H) has rank < i }. We

refer readers to [7] or [17] for more details.
The s-numbers of bounded operators defined above indeed enjoy many nice properties as

their compact operator counterparts. In particular, they can be used to construct unitarily
invariant norms on B(H). In this paper, we study the following class of unitarily invariant

norms on B(H): let c = (c1, . . . , ck) ∈ Rk, where c1 ≥ · · · ≥ ck > 0, and let 1 ≤ p < ∞.

Define the (c, p)-norm of an operator A ∈ B(H) by

‖A‖c,p = (c1s1(A)p + · · ·+ cksk(A)p)1/p .

When p = 1, the norm is simply called the c-norm and denoted by ‖ · ‖c. Further, if

c = (1, . . . , 1) ∈ Rk, the above definition reduces to the Ky-Fan k-norm. In particular, ‖A‖1

is the operator norm and will be denoted by the usual symbol ‖A‖. It is worth noting that
the c-norm and the Ky-Fan k-norm are very useful in the study of unitarily invariant when
dim H = n < ∞. For instance (see [12]), for every unitarily invariant norm N on Mn there
is a compact set S of vectors in Rn such that

N(A) = max{‖A‖c : c ∈ S}.

Thus, in certain sense, c-norms can be viewed as the “building blocks” of unitarily invariant
norms on Mn. Also, it is known [4] that two matrices A, B ∈ Mn satisfy N(A) ≤ N(B)

for all unitarily invariant norms N if and only if ‖A‖k ≤ ‖B‖k for all the Ky-Fan k-norms

‖ · ‖k, k = 1, . . . , n. Under suitable settings, these results can actually be extended to
compact operators.

In the next section we prove some basic properties of the (c, p)-norm. Then in section

3, we study the extreme points of the closed unit ball for ‖ · ‖c,p. The cases p = 1 and

p > 1 will be discussed separately. Using the properties obtained, we are able to describe
isometric isomorphisms on B(H) under these norms in the last section. They are of the form

depicted earlier. In particular, this extends the result of Kadison [11] on B(H) concerning
the isometries of the operator norm.

In the following discussion, we always assume that c = (c1, . . . , ck) with c1 ≥ · · · ≥ ck > 0,

and p ≥ 1; furthermore, we assume k > 1 so that ‖ · ‖c,p is not a multiple of ‖ · ‖. These

assumptions prevail unless otherwise stated.

2



2 Basic properties of ‖ · ‖c,p

It is easy to show that the (c, p)-norm is a unitarily invariant norm on B(H) equivalent to
the operator norm, namely,

c
1/p
1 ‖A‖ ≤ ‖A‖c,p ≤

(
k∑

i=1

ci

)1/p

‖A‖ .

More generally, we can compare different (c, p)-norms as shown in the following.

Proposition 2.1 Let 1 ≤ p, q < ∞, c = (c1, . . . , ck), d = (d1, . . . , dk), where c1 ≥ · · · ≥
ck ≥ 0, d1 ≥ · · · ≥ dk ≥ 0, and not both ck and dk are zero. Then

M = max
{
(d1z

q
1 + · · ·+ dkz

q
k)

1/q : z1 ≥ . . . ≥ zk ≥ 0, c1z
p
1 + · · ·+ ckz

p
k ≤ 1

}
is the smallest positive number satisfying

‖A‖d,q ≤ M‖A‖c,p for all A ∈ B(H) .

In particular, if p = q = 1, we have M = max {(d1 + · · ·+ di)/(c1 + · · ·+ ci) : 1 ≤ i ≤ k}.

Proof. The general assertion follows form the fact that

M = sup{‖A‖d,q : ‖A‖c,p ≤ 1}.

To verify the optimality, one needs only to consider a finite rank operator A with s-numbers
z1, . . . , zk, 0, . . . that yield the maximum M in the optimization problem.

For the particular case, let zk = sk and zi = si − si+1 for i = 1, . . . , k − 1. Then

k∑
i=1

disi =
k∑

i=1

di

k∑
j=i

zj =
k∑

i=1

 i∑
j=1

dj

 zi

≤
k∑

i=1

M
i∑

j=1

cj

 zi = M
k∑

j=1

cj

k∑
i=j

zi

= M
k∑

j=1

cjsj ,

by the definition of M . One easily checks that M is optimal. 2

Suppose A ∈ B(H) is compact. Then A admits a Schmidt expansion

A =
∞∑
i=1

si(A)〈·, xi〉yi ,

where {xi} and {yi} are orthonormal sequences. It follows that si(A) = 〈Axi, yi〉. This

expansion is very useful in the study of symmetrically normed ideals (see [7, 17, 19]). In
general, we have
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Lemma 2.2 (C.f. [6, Lemma 4.4]) For every A ∈ B(H) and ε > 0, there exist orthonormal

sequences {xi} and {yi} in B(H) such that |〈Axi, yi〉 − si(A)| < ε for all i.

Proof. If the operator A is compact, there are orthonormal sequences {xi} and {yi} such

that 〈Axi, yi〉 = si(A), as shown. In general, let E be the spectral measure for |A|. If

the projection E((s∞(A), ‖A‖]) is of infinite rank, there are infinity many eigenvalues for

|A| and the same argument as in the compact case applies. Otherwise there are finitely

many orthonormal vectors x1, . . . , xn such that |A|xi = si(A)xi for i = 1, . . . , n. Choose a

δ, 0 < δ < ε and s∞(A) − δ > 0. The projection E((s∞(A) − δ, s∞(A)]) is necessarily of

infinite rank. Take any orthonormal sequence {xn+i} in Im E((s∞(A)− δ, s∞(A)]). We have

‖|A|xn+i − s∞(A)xn+i‖ ≤ δ. As Im E((s∞(A) − δ, s∞(A)]) ⊆ Im |A| (Conway [3, p.274]),

which is contained in the initial space of U , the sequence {Uxn+i} is orthonormal. We have

|〈Axn+i, Uxn+i〉 − s∞(A)| = |〈U∗Axn+i, xn+i〉 − s∞(A)|
= |〈|A|xn+i − s∞(A)xn+i, xn+i〉| ≤ δ < ε .

The proof is complete. 2

We have the following description of the (c, p)-norm, which is an extension of [7, Lemma

II.4.1].

Proposition 2.3

‖A‖c,p = sup


(

k∑
i=1

ci|〈Axi, yi〉|p
)1/p

: {xi}k
i=1, {yi}k

i=1 are orthonormal sets in H


Proof. Let {xi}k

j=1 and {yi}k
j=1 be orthonormal sets in H. If H is finite-dimensional, then

(
k∑

i=1

ci|〈Ayi, xi〉|p
)1/p

≤
(

k∑
i=1

cisi(A)p

)1/p

.

In general, let P be the projection onto span {xi, Ayi, yi : i = 1, . . . , k}. Then by the
corresponding finite-dimensional result,

(
k∑

i=1

ci|〈Ayi, xi〉|p
)1/p

=

(
k∑

i=1

ci|〈PAyi, xi〉|p
)1/p

≤
(

k∑
i=1

cisi(PA)p

)1/p

≤
(

k∑
i=1

cisi(A)p

)1/p

.

The reverse inequality follows from Lemma 2.2. 2

Next, we consider some properties of the (c, p)-norm in connection to the algebraic prop-

erties of operators on B(H). Recall that ([19, p.54-55]) for a given norm N on B(H),
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(i) N is a uniform norm if N(AB) ≤ ‖A‖N(B) and N(AB) ≤ N(A)‖B‖,
(ii) N is a cross norm if N(A) = ‖A‖ for any rank one operator A ∈ B(H),

(iii) N is submultiplicative if N(AB) ≤ N(A)N(B) for all A, B ∈ B(H); if, in addition,

N(I) = 1, it is an algebra (or a ring) norm.

We have the following observations.

Proposition 2.4 Let ‖ · ‖c,p be given (c, p)-norm on B(H).

(a) Then ‖ · ‖c,p is a uniform norm.

(b) ‖ · ‖c,p is a cross norm if and only if c1 = 1.

(c) ‖ · ‖c,p is submultiplicative if and only if c1 ≥ 1.

(d) ‖ · ‖c,p is an algebra norm if and only if it is the operator norm.

Proof. Parts (a) and (b) follow easily from the basic properties of s-numbers and the defini-

tion of the (c, p)-norm.

To prove (c), suppose c1 ≥ 1. Then for any A, B ∈ B(H),

‖AB‖c,p ≤ ‖A‖‖B‖c,p ≤ ‖A‖c,p‖B‖c,p.

Conversely, if c1 < 1, let A be a rank one operator with s-numbers 1, 0, . . .. Then ‖A‖c,p =

c1 > c2
1 = ‖A‖2

c,p. Therefore, ‖ · ‖c,p is not submultiplicative.

Using Part (c), one can readily verify (d). 2

3 Extreme operators for ‖ · ‖c,p

Let Sc,p denote the closed unit ball for B(H) under ‖ · ‖c,p and let ext Sc,p denote the set of

all extreme points of Sc,p. When p = 1, then as usual, we suppress the index p. To describe

ext Sc, let rj =
∑j

i=1 ci and let Rj be the set of all rank j partial isometries. A maximal

partial isometry is either an isometry or a co-isometry, i.e. its adjoint is an isometry. The
set of all maximal partial isometries will be denoted by Rmax. Note that when H is finite-
dimensional, a complete description of ext Sc is given in [13, Theorem 2]. We include the
result below for easy reference.

Lemma 3.1 Suppose c1 = · · · = ch > · · · > cn−l+1 = · · · = cn ≥ 0 satisfy c2 > 0 and
c1 > cn. Then in Mn,

ext Sc = r−1
1 R1 ∪ ( ∪h<j<n−l r−1

j Rj) ∪ r−1
n Rn.

If n = h + l + 1, the middle summand is empty.

It is somewhat interesting that the same result holds when H is infinite-dimensional if
we replace Rn by Rmax.
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Theorem 3.2 Suppose c1 = · · · = ch > · · · ≥ ck > 0. Then

ext Sc = r−1
1 R1 ∪ ( ∪h<j<k r−1

j Rj) ∪ r−1
k Rmax

If k = h + 1, the middle summand is empty.

We divide the proof of Theorem 3.1 into Lemma 3.3 to Lemma 3.7.

Lemma 3.3
r−1
1 R1 ∪ ( ∪h<j<k r−1

j Rj) ⊆ ext Sc

Proof. Suppose A = 〈·, x〉y for ‖x‖ = ‖y‖ = 1 and r−1
1 A = 1

2
(B + C) for B, C ∈ Sc. For

every rank n (n > k) projections P and Q with x ∈ Im P and y ∈ Im Q, we have

r−1
1 A = r−1

1 QAP =
1

2
(QBP + QCP ) .

Since ‖QBP‖c, ‖QCP‖c ≤ 1, we conclude from Lemma 3.1 that QBP = QCP = r−1
1 A. As

P and Q are arbitrary, B = C = r−1
1 A.

Similarly, if A ∈ ∪h<j<k r−1
j Rj, then r−1

j A ∈ ext Sc. 2

Using a similar argument, we get

Lemma 3.4
r−1
k I ∈ ext Sc

Lemma 3.5
r−1
k Rmax ⊆ ext Sc

Proof. Suppose U is an isometry and r−1
k U = 1

2
(C+D) for C, D in Sc. Multiplying both sides

by U∗, we get r−1
k I = 1

2
(U∗C + U∗D). By Lemma 3.3, r−1

k I = U∗C. If C 6= r−1
k U , there is a

unit vector x ∈ H such that (C − r−1
k U)x = y 6= 0. As U∗C = r−1

k I, (C − r−1
k U)x ⊥ r−1

k Ux
and hence

‖Cx‖2 = ‖(C − r−1
k U)x + r−1

k Ux‖2

= ‖(C − r−1
k U)x‖2 + r−2

k ‖Ux‖2

= ‖y‖2 + r−2
k

> r−2
k .

Take an orthonormal set {x1, . . . , xk} in H with x1 = x and let y1 = Cx
‖Cx‖ , yi = Uxi for

i = 2, . . . , k. Then {y1, . . . , yk} is also an orthonormal set. In fact for i = 2, . . . , k,

〈y1, yi〉 =
1

‖Cx‖
〈Cx,Uxi〉

=
1

‖Cx‖
〈U∗Cx, xi〉

=
1

rk‖Cx‖
〈x, xi〉

= 0 .
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But then

‖C‖c ≥
k∑

i=1

ci|〈Cxi, yi〉|

= c1|〈Cx1, y1〉|+
k∑

j=2

ci|〈Cxi, xi〉|

= c1‖Cx‖+
k∑

j=2

ci|〈U∗Cxi, xi〉|

> c1r
−1
k +

(
k∑

i=2

ci

)
r−1
k

= 1 ,

contradicting C ∈ Sc. Hence r−1
k U = C = D.

If U is a co-isometry, then U∗ is an isometry. One can use the same argument to prove

r−1
k U ∈ ext Sc. 2

Lemma 3.6 If A ∈ ext Sc is a scalar multiple of a partial isometry, then

A ∈ r−1
1 R1 ∪ ( ∪h<j<k r−1

j Rj) ∪ r−1
k Rmax .

Proof. First of all, by Lemma 3.1, if A is of finite rank, then A ∈ r−1
1 R1 ∪ ( ∪h<j<k r−1

j Rj).

If A is of infinite rank, then A = r−1
k U for a partial isometry U . We claim that U is

maximal. Otherwise both subspaces ker U and (Im U)⊥ are non-zero. Take unit vectors

x ∈ ker U, y ∈ (Im U)⊥ and consider the operator B = 〈·, x〉y. For small enough ε > 0, we

have ‖A± εB‖c = 1. This contradicts A ∈ ext Sc. 2

Lemma 3.7 Every A ∈ ext Sc is a scalar multiple of a partial isometry.

Proof. Suppose A ∈ ext Sc. We shall prove that σ(|A|) ⊆ {0, ‖A‖} and hence A is a scalar

multiple of a partial isometry. If every non-zero element in σ(|A|) is an eigenvalue of |A|,
then by [8, Lemma 1], the assertion is true. Otherwise s∞(A) 6= 0 is an accumulation point

of σ(|A|). There is an ε > 0 such that σ(|A|) ∩ (0, s∞(A)− ε) 6= ∅. Let

f(t) =


2t if 0 ≤ t < (s∞ − ε)/2,
s∞ − ε if (s∞ − ε)/2 ≤ t < s∞ − ε,
t if s∞ − ε ≤ t ≤ ‖A‖,

and g(x) = 2t− f(t). Then f(|A|) 6= g(|A|). By the spectral mapping theorem,

σ(f(|A|)) ∩ [s∞(A)− ε, ‖A‖] = σ(g(|A|)) ∩ [s∞(A)− ε, ‖A‖]
= σ(|A|) ∩ [s∞(A)− ε, ‖A‖] ,
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and hence s∞(A) is an accumulation point of both σ(f(|A|)) and σ(g(|A|)). We conclude

that ‖f(|A|)‖c = ‖g(|A|)‖c = 1. Now |A| = 1
2
(f(|A|) + g(|A|)). If A = U |A| is the polar

decomposition of A, then A = 1
2
(Uf(|A|) + Ug(|A|)). As Im f(|A|), Im g(|A|) ⊆ Im |A|,

which is the initial space of U , we have Uf(|A|) 6= Ug(|A|). This contradicts the fact that
A ∈ ext Sc. 2

A refinement of the notion of an extreme point is the following. Let Q be a convex subset
of a normed linear space X. A point q ∈ Q is called an exposed point of Q if there is a
bounded R-linear functional f : X → R such that f(q) > f(p) for every q ∈ Q \ {q}. An

exposed point q is said to be strongly exposed if for every sequence {qn} in Q such that

f(qn) → f(q), we have qn → q. Clearly an exposed point is an extreme point of Q.

Grzaślewicz [9, Theorem 2] showed that under the operator norm, the closed unit ball

for B(H) does not have any strongly exposed point. We shall show that in the ‖ · ‖c case,
an extreme point of Sc is strongly exposed if and only if it is of finite rank.

Theorem 3.8 Let A ∈ ext Sc. Then A is a strongly exposed point of Sc if and only if

A ∈ r−1
1 R1 ∪ ( ∪h<j<k r−1

j Rj).

Proof. Suppose A ∈ r−1
k U is a strongly exposed point of Sc. Then it is easy to see that U is

a strongly exposed point of the closed unit ball for the operator norm. This contradicts [9,

Theorem 2] mentioned above.

For finite rank extreme points, we shall show that every A ∈ ∪h<j<k r−1
j Rj is a strongly

exposed point of Sc. The proof for A ∈ r−1
1 R1 is similar.

Suppose A = r−1
j

∑j
i=1〈·, xi〉yi for orthonormal sets {xi} and {yi}. Define f : B(H) → R

by

f(F ) = rj

j∑
i=1

Re 〈Fxi, yi〉 for all F ∈ B(H) .

The functional f exposes A in Sc. Indeed, f(A) = j and for any F ∈ Sc,

c1|〈Fx1, y1〉| + · · · + cj|〈Fxj, yj〉| ≤ 1 ,
c1|〈Fx2, y2〉| + · · · + cj|〈Fx1, y1〉| ≤ 1 ,

...
...

...
c1|〈Fxj, yj〉| + · · · + cj|〈Fxj−1, yj−1〉| ≤ 1 .

(1)

Summing up the j inequalities, we get f(F ) ≤ rj
∑j

i=1 |〈Fxi, yi〉| ≤ j.

If f(F ) = j for F ∈ Sc, then Re 〈Fxi, yi〉 = |〈Fxi, yi〉| for all i, and all inequalities in

(1) become equalities. Since c1 > cj, all 〈Fxi, yi〉 are equal and have the value r−1
j . Let P

and Q be projections onto the subspaces span {x1, . . . , xj} and span {y1, . . . , yj} respectively.
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Applying [10, Theorem 4.3.26] to the operator |QFP |, we get

s1(F ) ≥ r−1
j ,

s1(F ) + s2(F ) ≥ 2r−1
j ,

...
s1(F ) + · · ·+ sj(F ) ≥ jr−1

j .

On the other hand, we may replace each |〈Fxi, yi〉| by si(F ) in (1) to get rj
∑j

i=1 si(F ) ≤ j.

Hence rj
∑j

i=1 si(F ) = j. Again, as c1 > cj, all si(F ) are equal to r−1
j . The other s-numbers

must be zero. As 〈Fxi, yi〉 = si(F ) = r−1
j for all i, F = A by the following version of [13,

Lemma 4]:

Lemma 3.9 Let F ∈ B(H) be of finite rank n. If for orthonormal sets {x1, . . . , xn} and

{y1, . . . , yn}, 〈Fxi, yi〉 = si(F ) for every i, then

F =
n∑

i=1

si(F )〈·, xi〉yi .

We now show that A is strongly exposed. It is a modification of the preceding argument.
Let {An} be a sequence in Sc such that f(An) → f(A), or

rj

j∑
i=1

Re 〈Anxi, yi〉 → j.

Replacing F by An in system (1) above, we get

rj

j∑
i=1

|〈Anxi, yi〉| → j .

Indeed for each i, 〈Anxi, yi〉 → r−1
j . This is obtained by showing that every convergent

subsequence of {〈Anxi, yi〉} has limit r−1
j . Again let P and Q be projections onto the sub-

spaces span {x1, . . . , xj} and span {y1, . . . , yj} respectively. Then ‖(I −Q)An(I − P )‖ → 0;

for otherwise ‖An‖c > 1 for some large n. We claim that QAnP → A, (I − Q)AnP and

QAn(I − P ) → 0, and hence An → A.

Note that all the QAnP ’s are (essentially) mappings between fixed finite-dimensional
spaces. To show QAnP → A, we need only show that A is the only accumulation point. For

simplicity, let QAnP → B. Then 〈Bxi, yi〉 = r−1
j for all i. It is also clear that ‖B‖c ≤ 1 and

a similar argument as for F above shows that B = A.
If (I − Q)AnP 6→ 0, there exist an ε > 0 and a sufficiently large n such that ‖(I −

Q)AnP‖ > ε and 〈Anxi, yi〉 > r−1
j −ε′ (to be determined) for all i. Without loss of generality

we may assume that there is a unit vector y, orthogonal to all yi’s such that |〈Anx1, y〉| > ε.
Let

y′1 =
〈Anx1, y1〉y1 + 〈Anx1, y〉y√
|〈Anx1, y1〉|2 + |〈Anx1, y〉|2

.
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Then 〈Anx1, y
′
1〉 >

√
(r−1

j − ε′)2 + ε2. Choosing ε′ small enough, we obtain by Fan’s inequal-

ity (see [13, Lemma 3]) that ‖An‖c > 1, which is a contradiction. 2

For p > 1, we have

Theorem 3.10 An operator A is an extreme point of Sc,p if and only if

A =
j∑

i=1

si〈·, xi〉yi + sj+1U ,

where 1 ≤ j < k,
∑k

i=1 cis
p
i = 1, where si = sj+1 for i ≥ j + 1, and U is a maximal partial

isometry from {x1, . . . , xj}⊥ into {y1, . . . , yj}⊥.

Note that the above description includes A is a scalar multiple of some maximal partial
isometry.

Proof. (⇐=) Suppose A is of the above form with U an isometry from {x1, . . . , xj}⊥

into {y1, . . . , yj}⊥. We shall show that A is an extreme point of Sc,p. Let A = 1
2
(B +

C) for B, C ∈ Sc,p. Take an orthonormal set S1 = {x1, . . . , xj, . . . , xk}. The set S2 =

{y1, . . . , yj, Uxj+1, . . . , Uxk} is also orthonormal. Let P and Q be projections onto span S1

and span S2 respectively. We have

QAP =
j∑

i=1

si〈·, xi〉+ sj+1

k∑
i=j+1

〈·, xi〉Uxi ,

and QAP = 1
2
(QBP +QCP ). As the (c, p)-norm on Mk is strictly convex, (this is essentially

strict convexity of Ck under p-norm,) QBP = QCP = QAP . If R denotes the projection

onto span ({y1, . . . , yj}∪ Im U), we conclude that RB = RC = A. Now si = si(RB) ≤ si(B)

for all i. As

1 ≥
k∑

i=1

cisi(B)p ≥
k∑

i=1

cis
p
i = 1 ,

si(B) = si for all i. We have (I − R)B = 0, or B = A. Similarly, C = A. If U is a
co-isometry, the same argument shows that A is also an extreme point of Sc,p.

(=⇒) Let A ∈ ext Sc,p. We contend that the s-numbers eventually equal a constant, which

must be s∞(A). Otherwise every s-number of A is an eigenvalue of |A| and there is a large

n(> k) for which sn+1(A) < sn(A). Take a corresponding eigenvector xn+1 of sn+1(A) and let

B = 〈·, xn+1〉Axn+1. For sufficiently small ε > 0, we have ‖A± εB‖c,p = 1. This contradicts

A ∈ ext Sc,p. Note that the above reasoning indeed requires sk(A) = s∞(A). Now a similar

argument as in Lemma 3.6 shows (i) there is no other value in σ (|A|), except perhaps 0, and

(ii) A is of the required form. 2
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4 Isometric isomorphisms for ‖ · ‖c,p

The main result of this section is the following

Theorem 4.1 Suppose T : B(H) → B(H) is a linear isomorphism such that ‖T (A)‖c,p =

‖A‖c,p for every A ∈ B(H). Then there are unitary operators U and V such that either

T (A) = UAV for every A ∈ B(H) ,

or
T (A) = UAtV for every A ∈ B(H) ,

where At denotes the transpose of A with respect to an orthonormal basis fixed in advance.

Proof. (⇐=) Clear.

(=⇒) Suppose T : B(H) → B(H) is surjective and ‖T (A)‖c,p = ‖A‖c,p for all A. By Rais

[18, Lemma 3], T is of the given form if (and only if) T preserves maximal partial isometries.

As r
−1/p
k Rmax ⊆ ext Sc,p, which is fixed by T , we have to single out r

−1/p
k Rmax from other

extreme points. For p = 1, the set is precisely the non-strongly exposed points and we are
done. For p > 1, the following Lemma 4.2 concludes our proof. 2

Lemma 4.2 Let A be an extreme point of Sc,p. Then A is a scalar multiple of a maximal

partial isometry if and only if A can be decomposed into A = B + C with the property that

‖λB + µC‖c,p = max {|λ|, |µ|} for any λ, µ ∈ C. (2)

Proof. (=⇒) Let {x1, . . . , xk} be an orthonormal set in H, and let yj = Axj for j = 1, . . . , k.

Set B =
∑k

j=1〈·, xj〉yj and C = A−B. One easily checks that B and C satisfy (2).

(⇐=) Suppose A = B+C with the said condition. By our description of extreme points of Sc,p

(Theorem 3.8), it suffices to show that s1(A) = sk(A). Let (λ, µ) = (1, 0), (0, 1), (1, 2), (2, 1)

in (2). We see that ‖B‖c,p = ‖C‖c,p = 1 and ‖A + B‖c,p = ‖A + C‖c,p = 2. Hence

‖A + B‖c,p = ‖A‖c,p + ‖B‖c,p. Moreover

j∑
i=1

si(A + B) ≤
j∑

i=1

si(A) +
j∑

i=1

si(B) (j = 1, 2, . . .) .

We have

2 = (c1s1(A + B)p + · · ·+ cksk(A + B)p)1/p

≤ (c1(s1(A) + s1(B))p + · · ·+ ck(sk(A) + sk(B))p)1/p

≤ (c1s1(A)p + · · ·+ cksk(A)p)1/p + (c1s1(B)p + · · ·+ cksk(B)p)1/p

= 2 .
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It follows from [7, Lemma II.3.5] and Minkowski’s inequality that

(s1(A), . . . , sk(A)) = (s1(B), . . . , sk(B))

and
(s1(A + B), . . . , sk(A + B)) = 2(s1(A), . . . , sk(A)) .

If s1(A) > sk(A), then s1(A) is an s-number of A of finite multiplicity, say l. Clearly the
largest s-numbers of B and A + B also have multiplicity l. Now

L = {x ∈ H : ‖(A + B)x‖ = ‖A + B‖‖x‖}

is a subspace of H of dimension l, and the same is true if we replace A + B by A and B
respectively. Take any x ∈ L, we have

2‖A‖‖x‖ = ‖A + B‖‖x‖ = ‖(A + B)x‖ = ‖Ax + Bx‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ 2‖A‖‖x‖ .

Hence Ax = Bx and ‖Ax‖ = ‖A‖‖x‖. As both subspaces are of dimension l,

L = {x ∈ H : ‖Ax‖ = ‖A‖‖x‖} .

If we substitute C for B in the above argument, we also get Ax = Cx for every x ∈ L. But
then Ax = (B + C)x = 2Ax, which is a contradiction. 2
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