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Abstract

Let V be an n-dimensional Hilbert space. Suppose H is a subgroup of the symmetric
group of degree m, and χ : H → C is a character of degree 1 on H. Consider the symmetrizer
on the tensor space ⊗mV

S(v1 ⊗ · · · ⊗ vm) =
1

|H|
∑
σ∈H

χ(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(m)

defined by H and χ. The subspace V m
χ (H) of ⊗mV spanned by S(⊗mV ) is called the

symmetry class of tensors over V associated with H and χ. The elements in V m
χ (H) of the

form S(v1 ⊗ · · · ⊗ vm) are called decomposable tensors and are denoted by v1 ∗ · · · ∗ vm. For

any linear operator T acting on V , there is an (unique) induced operator Kχ(T ) (or just

K(T ) for notational simplicity) acting on V m
χ (H) satisfying

K(T )v1 ∗ . . . ∗ vm = Tv1 ∗ · · · ∗ Tvm.

We characterize multiplicative maps φ such that F (φ(T )) = F (T ) for all operators T acting
on V , where F are various scalar or set valued functions including the spectral radius,
(decomposable) numerical radius, spectral norm, spectrum, (decomposable) numerical range

of T or K(T ).
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1 Introduction

Let V be an n-dimensional Hilbert space. Suppose H is a subgroup of the symmetric group
of degree m, and χ : H → C is a character of degree 1 on H. Consider the symmetrizer on
the tensor space ⊗mV

S(v1 ⊗ · · · ⊗ vm) =
1

|H|
∑
σ∈H

χ(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(m)

defined by H and χ. The subspace V m
χ (H) of ⊗mV spanned by S(⊗mV ) is called the

symmetry class of tensors over V associated with H and χ. The elements in V m
χ (H) of the

form S(v1 ⊗ · · · ⊗ vm) are called decomposable tensors and are denoted by v1 ∗ · · · ∗ vm.
The study of symmetry classes of tensors is motivated by many branches of both pure

and applied mathematics: combinatorial theory, matrix theory, operator theory, group rep-
resentation theory, differential geometry, partial differential equations, quantum mechanics
and other areas. One may see [4, 13, 14, 16] for some general background.

For any linear operator T acting on V , there is a (unique) induced operator K(T ) acting

on V m
χ (H) satisfying

K(T )v1 ∗ . . . ∗ vm = Tv1 ∗ · · · ∗ Tvm.

The induced operator is a useful object in the study of symmetry classes of tensors. In
[13, 14, 12] many basic properties and problems concerning induced operators were studied.

In particular, the authors in [12] studied linear maps φ on operators acting on V such that

F (φ(T )) = F (T ) for various scalar or set valued functions F such as the spectral radius,

(decomposable) numerical radius, spectral norm, spectrum, (decomposable) numerical range

of T or K(T ). In this paper, we study multiplicative maps φ having these properties.
We shall present some preliminaries in Section 2, and prove our multiplicative preserver

results in Section 3 and Section 4.
In the subsequent discussion, we always assume that χ is a linear character on a subgroup

H of the symmetric group of degree m. As shown in Section 2, we can identify V with Cn,
and identify the algebra of linear operators on V with the algebra of n×n complex matrices
Mn.

2 Preliminaries

Define the generalized matrix function dχ : Mm → C associated with χ by

dχ(X) =
∑
σ∈H

χ(σ)
m∏

j=1

Xj,σ(j), X = (Xjk) ∈Mm.

One can use this concept to facilitate the study of symmetry classes of tensors and induced
operators. For instance, the inner product on V m

χ (H) can be expressed in terms of the inner

product (u, v) on V by the following formula:

(u1 ∗ · · · ∗ um, v1 ∗ · · · ∗ vm) =
1

|H|
dχ[(ui, vj)].
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In fact, if we identify V with Cn with respect to a fixed orthonormal basis

B = {e1, . . . , en},

then a decomposable tensor v∗ = v1 ∗ · · · ∗ vm ∈ V m
χ (H) can be identified with the n ×m

matrix X such that the jth column of X is the co-ordinate vector of vj with respect to B
and

(v∗, v∗) =
1

|H|
dχ(X∗X).

Let Γm,n be the set of sequences α = (α(1), . . . , α(m)) with 1 ≤ α(j) ≤ n for j = 1, . . . ,m.

Then
{eα(1) ⊗ · · · ⊗ eα(m) : α ∈ Γm,n}

is a basis for ⊗mCn. Furthermore, one can generate an orthonormal basis for V m
χ (H) from

B. We need some more notations to do that. For r = 1, . . . , n and α ∈ Γm,n, let mr(α) be

the number of times the integer r appears in α. Two sequences α and β in Γm,n are said

to be equivalent modulo H, denoted by α ∼ β, if there exists σ ∈ H such that β = ασ.
Evidently, this equivalence relation partitions Γm,n into equivalence classes. Let ∆ be a

system of representatives for the equivalence classes so that each sequence in ∆ is first in

lexicographic order in its equivalence class. Define ∆̄ as the subset of ∆ consisting of those
sequences w ∈ ∆ such that

ν(w) =
∑

σ∈Hw

χ(σ) 6= 0,

where Hw is the stabilizer of w, i.e., Hw = {σ ∈ H : wσ = w}. Then

{eα(1) ∗ · · · ∗ eα(m) : α ∈ ∆̄}

is an orthogonal basis for V m
χ (H), and one can get an orthonormal basis B̃ after normaliza-

tion. Furthermore, for any A = (ajk) ∈Mn, denote by A[β|α] the m×m matrix with (r, s)

entry equal to aβ(r),α(s). If A ∈Mn is the matrix representation of T with respect to B, then

the induced operator K(T ) has a matrix representation with respect to the basis B̃, denoted

by K(A). In fact (see e.g. [13, p.126]), K(A) is an |∆̄| × |∆̄| matrix with rows and columns

indexed lexicographically by the set ∆̄ so that the entry of K(A) labeled by (α, β) in ∆̄× ∆̄
is equal to

1√
ν(α)ν(β)

dχ(At[β|α]).

By the above discussion, we can identify V with Cn, T with A ∈ Mn and K(T ) with

K(A), etc. From this point, we shall work on these matrix formulations of the induced

operators. Furthermore, we shall always assume that ∆̄ 6= ∅ so that K(A) is well-defined.
We give several common examples of symmetry classes of tensors and induced operators

in the following.
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Example 2.1 Let 1 ≤ m ≤ n, H = Sm and χ be the alternate character. Then V m
χ (H) is

the mth exterior space over V = Cn, ∆̄ is the set of strictly increasing sequences in Γm,n,

dχ(B) = det(B) is the determinant for B ∈Mm, and K(A) is the mth compound matrix of

A ∈Mn.

Example 2.2 Let H = Sm and χ = 1 be the principal character. Then V m
χ (H) is the mth

completely symmetric space over V = Cn, ∆̄ = Gm,n is the set of increasing sequences in

Γm,n, dχ(B) = per(B) is the permanent for B ∈ Mm, and K(A) is the mth induced power

of A ∈Mn.

Example 2.3 Let H = {e} where e is the identity in Sm and χ = 1 be the principal

character. Then V m
χ (H) = ⊗mV , ∆̄ = Γm,n, dχ(B) =

∏m
j=1 bjj for B = (bjk) ∈ Mm, and

K(A) = ⊗mA is the mth tensor power of A ∈Mn.

We list some basic properties of K(A) in the following (see [13, Chapter 2]).

Proposition 2.4 The following properties hold for induced matrices.
(a) K(In) = I|∆̄|.

(b) K(AB) = K(A)K(B) for any A,B ∈Mn.

(c) K(A∗) = K(A)∗ for any A ∈Mn.

(d) A ∈Mn is invertible if and only if K(A) is. Moreover, we have K(A−1) = K(A)−1.

(e) If A ∈Mn is in (lower or upper) triangular or in diagonal form, then so is K(A).

(f) If A has eigenvalues λ1, . . . , λn, and singular values s1 ≥ · · · ≥ sn, then for any σ ∈ Sn,

K(A) has eigenvalues
∏n

j=1 λ
mj(α)
σ(j) and singular values

∏n
j=1 s

mj(α)
σ(j) , α ∈ ∆̄.

(g) det(K(A)) = det(A)k, where k = |∆̄|m/n.
(h) If rank (A) = r, then rank (K(A)) = |Γm,r ∩ ∆̄|.
(i) If A ∈Mn is normal, unitary, positive (semi-)definite, hermitian or skew-hermitian (when

m is odd), then K(A) has the corresponding property.

Note that part (f) in the above proposition is usually stated with σ equal to the identity
permutation. In our statement, we emphasis that relabeling of the indices of the eigenvalues
or singular values will not affect the conclusion. This observation will be used frequently in
our study.

We shall use µ(∆̄) to denote the smallest integer r such that Γm,r ∩ ∆̄ 6= ∅. As a result,

a matrix A ∈Mn satisfies K(A) = 0 if and only if rank (A) < µ(∆̄).

It is natural to ask whether the converse of Proposition 2.4 (i) holds. Unfortunately, it

is not true in general as noted in [13, p.148]. In [12], the authors identified the situation
under which the converses of the above proposition hold. In particular, it was shown that
the converses only fail for the following types of characters.
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Definition 2.5 We say that the character χ is of the determinant type if every element

α ∈ ∆̄ satisfies m1(α) = · · · = mn(α) = m/n. Furthermore, we say that χ is of the special

type if every α ∈ Γm,r ∩ ∆̄ satisfies m1(α) = · · · = mr(α) where r = µ(∆̄) with 1 < r.

Note that the alternate character on Sn is of the determinant type; the alternate character
on Sm with m < n is of the special type but not of the determinant type, and the principal
character is of the general type. Here we give some additional examples of χ that are of the
special type and the determinant type.

Example 2.6 Consider the alternating group in S4 and use the character χ2 in [10, p.181],

i.e., χ2(σ) = 1 if σ is the identity permutation or a product of two disjoint transpositions,

and if 1 ≤ i < j < k ≤ 4 then χ2((i, j, k)) = w and χ2((i, k, j)) = w2, where w = e2πi/3.

(a) If n = 2, then

∆̄ = {(1, 1, 2, 2)},

and χ2 is of the determinant type.

(b) If n = 3, then

∆̄ = {(j, j, k, k) : 1 ≤ j < k ≤ 3} ∪ {(1, 1, 2, 3), (1, 2, 2, 3), (1, 2, 3, 3)},

and χ2 is of the special type but not of the determinant type.

Let A ∈Mn. The numerical range of A is defined by

W (A) = {(Ax, x) : x ∈ Cn, (x, x) = 1},

and the numerical radius of A is defined by

w(A) = max{|η| : η ∈ W (A)}.

These concepts have been studied extensively because of their connections and applications
to many branches of pure and applied mathematics (see e.g., [5, 6, 8, 9]).

In the study of induced operators on symmetry tensors, it is natural to consider the
decomposable numerical range of A ∈Mn defined by

Wχ(A) = {(K(A)x∗, x∗) : x∗ is a decomposable unit tensor },

see [14, 15], and the decomposable numerical radius of A ∈Mn defined by

wχ(A) = max{|η| : η ∈ Wχ(A)}.

In terms of the generalized matrix function, we can write

Wχ(A) =

{
dχ(X∗AX)

dχ(X∗X)
: X ∈Mn×m, dχ(X∗X) 6= 0

}
.
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Evidently, when m = 1, Wχ(A) reduces to the classical numerical range W (A).

Certainly, one can also consider the classical numerical range and radius of the induced
matrix K(A). Since the set of decomposable unit tensors is usually a proper subset of the

set of unit vectors in V m
χ (H), we have

Wχ(A) ⊆ W (K(A)),

and the inclusion is often strict. Consequently, we have

wχ(A) ≤ w(K(A)),

and again the inequality is usually strict. Thus, the set Wχ(A) usually contains “less”

information than W (K(A)), and the quantity wχ(A) is different from w(K(A)). However,

in the study of symmetry classes of tensors and induced operators, one may only have
information about Wχ(A) and wχ(A) but not W (K(A)) and w(K(A)). Nonetheless, it was

shown in [12] that one can extract useful information about the operator A based on the

limited knowledge on Wχ(A) and wχ(A).

3 Multiplicative Preservers

We will use the following notations:
{E11, E12, . . . , Enn}: the standard basis for Mn,

M (k)
n : the semigroup of matrices in Mn with rank at most k, where k ∈ {1, . . . , n}.

GLn: the group of invertible matrices in Mn,
SLn: the group of matrices in Mn with determinant 1,
T: the group of z ∈ C with |z| = 1,

C∗: the group of nonzero complex numbers,

τ(A) = (At)−1 for any invertible A ∈Mn,

Eig(A): the multiset (with n elements) of eigenvalues of A ∈Mn,

Sp(A): the spectrum of A ∈Mn, i.e. the set of distinct eigenvalues of A,

ρ(A) = max{|λ| : λ ∈ Sp(A)} is the spectral radius of A.

We often use the fact that a field automorphism f on C has the form z 7→ z or z 7→ z̄ if f
satisfies any one of the following conditions:

(i) |f(z)| = |z| for all z ∈ C, (ii) |f(z)| = 1 for all z ∈ C with |z| = 1. (3.1)

Let R = M (k)
n , SLn or GLn. In the following, we determine the structures of multiplica-

tive maps φ : R→Mn on matrices such that

F (φ(A)) = F (A) for all A ∈ R, (3.2)

where F (A) = K(A), ‖K(A)‖, ρ(K(A)), w(K(A)), wχ(A), W (K(A)), Wχ(A), Eig(K(A)),

or Sp(K(A)).
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Note that if χ is of the determinant type then

| det(A)|m/n = ‖K(A)‖ = ρ(K(A)) = w(K(A)) = wχ(A),

{det(A)m/n} = W (K(A)) = Wχ(A) = Sp(K(A)) = Eig(K(A)).

There are many degenerate multiplicative maps satisfying (3.2). For examples, the mapping
φ of the form

A 7→ diag (det(A), 1, . . . , 1)

will satisfy (3.2). Recall that µ(∆̄) is the smallest integer r such that Γm,r ∩ ∆̄ is nonempty,

and thus A ∈ Mn satisfies K(A) = 0 if and only if rank (A) < µ(∆̄). So, condition (3.2)

does not carry much information on φ(A) for matrices with rank less than µ(∆̄). Therefore,

we only consider multiplicative maps φ : R → Mn with R = SLn or GLn if µ(∆̄) = n. If

µ(∆̄) < n, we can also consider R = M (k)
n with k ≥ µ(∆̄) and we have the following.

Theorem 3.1 Suppose χ is not of the determinant type, µ(∆̄) < n and k ≥ µ(∆̄). Let R
be a semigroup in Mn containing M (k)

n , and let F (A) = K(A), ‖K(A)‖, ρ(K(A)), w(K(A)),

wχ(A), W (K(A)), Wχ(A), Sp(K(A)), or Eig(K(A)). A multiplicative map φ : R → Mn

satisfies
F (φ(A)) = F (A) for all A ∈ R,

if and only if one of the following holds.

(a) F (A) = K(A) and φ is the identity map.

(b) F (A) = ρ(K(A)) and there exists S ∈ SLn such that φ has the form

A 7→ S−1AS or A 7→ S−1AS.

(c) F (A) = Eig(K(A)) or Sp(K(A)); there exists S ∈ SLn such that φ has the form

A 7→ S−1AS.

(d) F (A) = ‖K(A)‖, w(K(A)) or wχ(A); there exists a unitary U such that φ has the

form

A 7→ U∗AU or A 7→ U∗AU.

(e) F (A) = W (K(A)) or Wχ(A); there exists a unitary U such that φ has the form

A 7→ U∗AU.

Proof. The (⇐) part is clear. We consider the (⇒) part. Note that if E ∈ M (k)
n is an

idempotent, i.e., E2 = E, then φ(E) = φ(E2) = φ(E)2 is also an idempotent. Let r =

µ(∆̄) < n. If E is a rank r idempotent, then K(E) 6= 0|∆̄| = K(0n). Thus, for any of our

functions F , F (φ(E)) = F (E) 6= F (0n) and hence φ(E) 6= 0n. By the result in [11] (see also

Proposition 2.2 and 2.5 in [1]), one of the following holds.
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(i) There exist S ∈ SLn and a field automorphism f : C → C such that φ has the form

(aij) 7→ S−1(f(aij))S.

(ii) n ≥ 3, r = n− 1, φ(E) = 0 for all idempotent E with rank less than n− 1, and

{φ(I − Ejj) : 1 ≤ j ≤ n}

is a set of mutually orthogonal rank one idempotents.

If (ii) holds, then φ(I − Enn) = Y has rank one and φ(Y ) = 0n. But then

F (0n) = F (φ(Y )) = F (Y ) = F (I − Ejj) 6= F (0n),

which is a contradiction. So, we conclude that (i) holds.

Suppose F (A) = K(A), ρ(K(A)), Eig(A) or Sp(K(A)). Then for A = µ(E11 + · · ·+Err)
with µ ∈ C,

F (φ(A)) = F (A)

implies that
|f(µ)m| = ρ(K(φ(A))) = ρ(K(A)) = |µm|.

It follows that |f(µ)| = |µ|. So f satisfies one of the conditions in (3.1) and has the form

µ 7→ µ or µ 7→ µ̄. In case F (A) = K(A), Eig(A) or Sp(K(A)), we see that f is the identity

map. In particular, conditions (b) and (c) hold.

If F (A) = K(A), thenK(A) = K(S−1AS). If χ is not of the special type, then φ(A) = ξA

for some mth root of unity ξ ∈ C by Theorem 2.17 in [12]. If A has rank r and a nonzero

eigenvalue then µ = 1 because ξA and φ(A) = S−1AS have the same eigenvalues. Since

S−1AS = A for all A with rank r and a nonzero eigenvalue, we see that S = In. Consequently,
we have φ(A) = A for all A ∈ R.

Suppose χ is of the special type. For X ∈ Mn and J ⊆ {1, . . . , n}, let X[J ] be the

principal submatrix of X lying in rows and columns with indices in J , and X(J) be the
principal submatrix of X lying in rows and columns with indices not in J . By Theorem 2.17
in [12], for any A of the form

A =
∑
j∈J

Ejj, where J ⊆ {1, . . . , n} with |J | = r, (3.3)

S−1AS is a direct sum of S−1AS[J ] and S−1AS(J), where S−1AS = A0 with | det(A0)| = 1

and S−1AS(J) = 0. So AS = S(S−1AS), and we see that S itself is a direct sum of

S[J ] and S(J). Since this is true for all J ⊆ {1, . . . , n} with |J | = r, we conclude that

S = diag (s1, . . . , sn) is a diagonal matrix. We may replace S by S/s1 and assume that

s1 = 1. Now, suppose sj 6= 1 for some j ≥ 2. Consider α ∈ ∆̄ with m1(α) = · · · = mr(α)

where r = µ(∆̄). Let

v∗ = fα(1) ∗ · · · ∗ fα(m) and u∗ = fα(1) ∗ · · · ∗ fα(m−1) ∗ e1
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such that e1 /∈ {f1, . . . , fr} = {ei1 , . . . , eir} with fα(m) = ej. Suppose A =
∑r

t=1Eit,it + Ej1.

Then v∗ is a unit eigenvector of K(A) and

K(A)v∗ = Afα(1) ∗ · · · ∗ Afα(m) = fα(1) ∗ · · · ∗ fα(m).

Moreover,

(S−1AS)fα(t) = fα(t) for t = 1, . . . ,m− 1,

and
(S−1AS)e1 = (S−1A)ej/sj = fα(m)/sj.

As a result,

fα(1) ∗ · · · ∗ fα(m) = Afα(1) ∗ · · · ∗ Afα(m−1) ∗ Ae1
= K(A)u∗

= K(S−1AS)u∗

= (S−1AS)fα(1) ∗ · · · ∗ (S−1AS)fα(m−1) ∗ (S−1AS)e1

= fα(1) ∗ · · · ∗ fα(m)/sj.

Since v∗ = fα(1) ∗ · · · ∗ fα(m) is a unit vector, it follows that sj = 1, which is a contradiction.

Thus, all diagonal entries of S are the same, and φ(A) = S−1AS = A for any A ∈ Mn, i.e.,

φ is the identity map. Hence, condition (a) holds.

Suppose F (X) = ‖K(X)‖, w(K(X)), or wχ(X). Let A = µ(E11 + · · ·+Err) with µ ∈ C

such that |µ| = 1. Then for any positive integer s,

1 = F (As) = F (φ(As)) = F (φ(A)s) = F (f(µ)sS−1(E11 + · · ·+ Err)S)

≥ ρ(K(f(µ)sS−1(E11 + · · ·+ Err)S)) = |f(µ)sm|.

So, 1 ≥ |f(µ)|. If 1 > |f(µ)|, then lims→∞ φ(As) = 0 implies

1 = lim
s→∞

F (As) = lim
s→∞

F (φ(As)) = 0,

which is a contradiction. So, |f(µ)| = 1 whenever |µ| = 1. So one of the conditions in (3.1)
holds, and f has the form µ→ µ or µ→ µ̄. Suppose

A = γU∗(E11 + · · ·+ Err)U with γ > 0 and U unitary . (3.4)

We claim that

(1) φ(A) = γV ∗(E11 + · · ·+ Err)V for some unitary V , and

(2) the matrices of the form (3.4) generate the set P of all positive semi-definite matrices
of rank at most r under multiplication.
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To prove (1), note that

γm = F (A) = F (φ(A)) = F (S−1AS) ≥ ρ(K(S−1AS)) = γm.

By Proposition 3.10 in [12], we see that φ(A) = S−1AS is unitarily similar to A1 ⊕ A2 such

that A1 ∈Mr has eigenvalues λ1, . . . , λr such that F (φ(A)) = |∏r
j=1 λ

mj(α)
j | for some α ∈ ∆̄.

Observe that φ(A) = S−1AS has rank r and r nonzero eigenvalues all equal to γ. Moreover,

and φ(A/γ)2 = φ(A/γ). We see that (A1/γ)
2 = A1/γ = Ir and A2 = 0n−r. Thus, (1) holds.

To prove (2), suppose C = X∗(
∑r

j=1 cjEjj)X with some unitary X and c1 ≥ · · · ≥ cr ≥ 0.

We show that C is a product of the matrices in the form (3.4) by induction on the number

of elements in {c1, . . . , cr} different from c1. If c1 = · · · = cr, then C itself has the form (3.4).
Suppose the result is proved for the case when c1 = · · · = cr−k with k ≥ 0. Consider the

case when c1 = · · · = cr−k−1 > cr−k. Let t ∈ [0, π/2) such that c1(cos2 t) = cr. By induction

assumption, the matrices B1 =
∑r−1

j=1 cjEjj + c1Err is a product of the matrices of the form

(3.4). Also, the matrix

B2 = Ir−1 ⊕
(

cos2 t cos t sin t
cos t sin t sin2 t

)
is a matrix of the form (3.4). Moreover, B2B1B2 has the same eigenvalues as C. So, there

is a unitary Y such that (Y ∗B2Y )(Y ∗B1Y )(Y ∗B2Y ) = C. Hence, our induction proof is

completed, and (2) holds.

Now, by (1) and (2), we see that φ(P) ⊆ P. Note also that φ(X) = S−1XS 6= 0n = φ(0n)

for a rank one X. By Theorem 3.6 of [1], φ has the form asserted in (d).

If W (K(φ(A))) = W (K(A)) for all A ∈ R, then w(K(φ(A))) = w(K(A)) for all A ∈ R.

So, φ has one of the two form in (d). Consider A = µ(E11 + · · · + Err) for nonzero µ ∈ C.
One sees that the second form cannot hold. Similarly, one can show that φ has the same
form if Wχ(K(φ(A))) = Wχ(K(A)) for all A ∈ R. Thus, condition (e) holds.

Next we consider multiplicative maps φ : G → Mn with G = SLn or GLn. We begin
with the following.

Theorem 3.2 Let G = SLn or GLn. Suppose χ is not of the determinant type. A multi-
plicative map φ : G→Mn satisfies

K(φ(A)) = K(A) for all A ∈ G

if and only if φ is the identity map.

Proof. For any A ∈ G, there exists B such that Bm = A. By Theorem 2.17 in [12],

K(φ(B)) = K(B) implies φ(B) = µB for some µ ∈ C such that µm = 1. Thus, φ(A) =

φ(B)m = A.

To further our study, we need the following result in [3].
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Lemma 3.3 Suppose G = SLn or GLn and φ : G→Mn is a multiplicative map. Then one
of the following holds.

(1) {φ(A) : A ∈ SLn} is a singleton.

(2) There is a field embedding f : C → C, a multiplicative map g : C∗ → C∗, and S ∈ SLn

such that φ has the form

A 7→ g(det(A))S−1f(A)S or A 7→ g(det(A))S−1(f(τ(A)))S,

where τ(A) = (At)−1 and f(A) = (f(aij)) for A = (aij).

Next, we consider multiplicative maps on G = SLn or GLn preserving other functions.

Theorem 3.4 Suppose χ is not of the determinant type, and F (A) = ρ(K(A)), ‖K(A)‖,
w(K(A)), or wχ(A). A multiplicative map φ : G→Mn satisfies

F (φ(A)) = F (A) for all A ∈ G (3.5)

if and only if there exist a multiplicative map g : C∗ → T and S ∈ SLn, where S is unitary
if F (A) 6= ρ(K(A)), such that one of the following holds.

(a) φ has the form

A 7→ g(det(A))S−1AS or A 7→ g(det(A))S−1AS.

(b) F (A) = F (det(A)2/nτ(A)) and φ has the form

A 7→ g(det(A))| det(A)|2/nS−1τ(A)S or A 7→ g(det(A))| det(A)|2/nS−1τ(A)S.

Proof. The (⇐) can be verified readily. We focus on the converse. Since χ is not of the
determinant type, there are nonnegative integers m1 ≥ · · · ≥ mn with m1 + · · · + mn = m
and m1 > mn such that ρ(K(A)) = |λ1(A)m1 · · ·λn(A)mn|, whenever λ1(A), . . . , λn(A) are

eigenvalues of A ∈Mn satisfying |λ1(A)| ≥ · · · ≥ |λn(A)|.
Let G = SLn. Then there is S ∈ SLn and a field embedding f on C such that φ has the

form
A 7→ S−1f(A)S or A 7→ S−1f(τ(A))S.

Note that we must have f(±1) = ±1 and f(i) = ±i. First, we show that if F (A) = ‖K(A)‖,
w(K(A)) or wχ(A), then S can be chosen to be unitary. To this end, let T be the set of

unitary matrices A ∈ SLn such that each row and column has exactly one nonzero entries
in {1,−1, i,−i}. For each A of this form, we have f(A) = B ∈ T and

| det(φ(A))|m/n = | det(B)|m/n = F (B) = F (φ(A)).

By Theorem 3.11 in [12], we see that φ(A) is unitary. Thus, (S−1AS)(S−1AS)∗ is the identity,

and hence (SS∗)A = A(SS∗) for any A ∈ T . It is easy to show that the linear span of T
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equals Mn. Thus, SS∗ commutes with all matrices in Mn. It follows that SS∗ = aIn for

some a > 0. Replacing S by a−1/2S, we may assume that S is unitary.

For any z ∈ C∗, there is a positive integer k such that |kz| > 1 and |kf(z)| > 1. If A =

diag (kz, 1, . . . , 1, 1/(kz)), then φ(A) is normal with eigenvalues kf(z), 1, . . . , 1, 1/(kf(z)).
Since

|kf(z)|m1−mn = ρ(K(φ(A)) = F (φ(A)) = F (A) = ρ(K(A)) = |kz|m1−mn ,

we have |z| = |f(z)|. Hence f satisfies one of the conditions in (3.1) and has the form z 7→ z

or z̄. Thus, φ on SLn has the form (a) – (b). Note that for any A ∈ SLn, we have det(A) = 1,

and thus we always have g(det(A)) = g(det(A))| det(A)|2/n = 1.

Now, consider G = GLn. Suppose φ on SLn has the form (a). Then φ on GLn has the
form

A 7→ g(det(A))S−1AS or A 7→ g(det(A))S−1AS.

Considering A = aI, one see that |g(z)| = 1 for all z ∈ C∗.

Suppose φ on SLn has the form (b). Then φ on GLn has the form

A 7→ g(det(A))| det(A)|2/nS−1τ(A)S or A 7→ g(det(A))| det(A)|2/nS−1τ(A)S

for some multiplicative map g on C∗. We may assume that the former case holds; otherwise,

replace φ by the mapping A 7→ φ(A). If n = 2, this reduces to the operator of the form

(a). If n ≥ 3, then for A = diag (r, r, 1, . . . , 1, 1/r2) with r > 1, we have rm1+m2−2mn =

F (A) = F (φ(A)) = r2m1−mn−1−mn . Thus, m1 + mn = m2 + mn−1. Next, consider A =

diag (r, r, r, 1, . . . , 1/r3). Since rm1+m2+m3−3mn = F (A) = F (φ(A)) = r3m1−mn−2−mn−1−mn ,
we see that m3 +mn−2 = m1 +mn. Repeating these arguments, we conclude that

mj +mn−j+1 = 2m/n for j = 1, . . . , n, (3.6)

where m = m1 + · · ·+mn. It is now easy to see that for any normal matrix A,

F (A) =
n∏

j=1

|λj(A)|mj = | det(A)|2m/n
n∏

j=1

|λ−mj

n−j+1(A)| = F (det(A)2/nτ(A)).

By polar decomposition, every matrix A is the product of two normal matrices; thus the
above conclusion holds for every matrix A ∈ GLn.

Theorem 3.5 Suppose χ is not of the determinant type, and F (A) = Eig(K(A)), Sp(K(A)),

W (K(A)), or Wχ(A). A multiplicative map φ : G→Mn satisfies

F (φ(A)) = F (A) for all A ∈ G

if and only if there is S ∈ SLn, where S is unitary if F (A) = W (K(A)) or Wχ(A), such

that φ has the form

A 7→ S−1AS.

12



Proof. The (⇐) part is clear. Conversely, if φ preserves F for those F in Theorem 3.5, then
φ will preserve those F in Theorem 3.4. Thus φ satisfies the conclusion of Theorem 3.4.
Considering diagonal matrices of the form diag (z, 1, . . . , 1, 1/z), we see that φ on SLn has

the asserted form. For GLn, if z1 ∈ C∗ then φ(z1I) = z2I with zm
1 = zm

2 . It follows that

φ(zI) = zI for any z ∈ C∗. Thus φ has the asserted form as well.

4 Generalized Matrix Function Preservers

In this section, we assume m = n and study multiplicative maps φ : Mn → Mn preserving
generalized matrix functions on Mn, i.e., dχ(φ(A)) = dχ(A) for all A ∈ Mn. We begin with

the following observation.

Lemma 4.1 The equality µ(∆̄) = n holds if and only if χ = ε, the alternating character,
i.e., dχ is the determinant function.

Proof. If χ = ε, then µ(∆̄) = n. Conversely, suppose χ 6= ε. If there exists a transposition

(i, j) /∈ H, then dχ(I + Eij + Eji) = 1. If H contains all the transpositions, then H = Sn.

Note that there must exists some (i, j) ∈ H such that χ((i, j)) 6= −1 otherwise χ = ε which

is impossible. So again dχ(I + Eij + Eji) 6= 0. Therefore µ(∆̄) < n.

Suppose R ⊆Mn. Define

Sχ(R) = {S ∈ SLn : dχ(S−1AS) = dχ(A) for all A ∈ R}.

The set Sχ(Mn) is completely classified by De Oliveira and Dias Da Silva[17, 18]. Note that

Sχ(Mn) = Sχ(GLn) = Sχ(SLn) because of the following reasons. The set R = GLn is dense

in Mn. Since the functions dχ and the function A 7→ S−1AS are continuous on Mn, we see

that dχ(A) = dχ(S−1AS) for all A ∈Mn and hence Sχ(GLn) = Sχ(Mn). In the case of SLn,

every A ∈ GLn can be written as µ(A/µ) with µ = det(A)1/n so that A/µ ∈ SLn, and hence

dχ(A) = dχ(µA) = µmdχ(A/µ) = µmdχ(S−1(A/µ)S) = dχ(µS−1(A/µ)S) = dχ(S−1AS).

Therefore Sχ(SLn) = Sχ(GLn).

Theorem 4.2 Suppose dχ is not the determinant function and R contains M (k)
n for some

positive integer k ≥ µ(∆̄). A multiplicative map φ : R→Mn satisfies

dχ(φ(A)) = dχ(A) for all A ∈ R,

if and only if there exists S ∈ Sχ(R) such that φ has the form A 7→ S−1AS.

Proof. Let α ∈ Γn,r ∩ ∆̄. We may assume that

m1(α) ≥ · · · ≥ mr(α) > 0 = mr+1(α) = · · · = mn(α).

13



Let A = diag (1/a1, . . . , 1/ar, 0, . . . , 0) ∈Mn such that aj = mj(α) for j = 1, . . . , n. Then

E = A[α|α] (4.1)

is permutationally similar to
A1 ⊕ · · · ⊕ Ar

such that Aj ∈ Maj
with all entries equal to 1/aj for j = 1, . . . , r. Thus, E is a rank r

orthogonal projection. Moreover, dχ(E) = dχ(At[α, α]) is a multiple of the (α, α)th entry

of K(A) and equals ν(α)
∏r

j=1(1/aj)
mj(α) 6= 0; see the discussion before Example 2.1. Since

dχ(0n) = 0 6= dχ(E), we see that φ(E) 6= 0n. By the result in [11] (see also [1]), we conclude

that one of the following conditions holds.

(i) There exist S ∈ SLn and a field automorphism f : C → C such that φ has the form

(aij) 7→ S−1(f(aij))S. (4.2)

(ii) n ≥ 3, r = n− 1, φ(F ) = 0 for all idempotent F with rank less than n− 1, and

{φ(I − Ejj) : 1 ≤ j ≤ n}

is a set of mutually orthogonal rank one idempotents.

Suppose (ii) holds. Then the matrix E constructed in (4.1) must have rank at least n − 1.
Otherwise,

0 6= dχ(E) = dχ(φ(E)) = dχ(0n) = 0,

which is a contradiction. Since we assume that µ(∆̄) 6= n, we see that E has rank n − 1 =

µ(∆̄). Note that the matirx E can be written as [T | 0](I −Enn)[T | 0]t for some n× (n− 1)

real matrix T such that T tT = In−1. Since φ(I − Enn) has rank one, we conclude that

φ(E) = φ([T | 0])φ(I − Enn)φ([T | 0]t)

has rank at most one, and thus φ(φ(E)) = 0. But then

0 = dχ(φ(φ(E))) = dχ(E) > 0,

which is a contradiction.
From the above discussion, we see that condition (i) holds. It remains to prove that f is

the identity map. Let us continue to use the matrix E constructed in (4.1). For any µ ∈ C,

there is ν ∈ C such that νn = µ. Since φ has the form (4.2), we see that

φ(νE) = f(ν)φ(E)

and hence

µdχ(E) = dχ(νE) = dχ(φ(νE)) = dχ(f(ν)φ(E)) = f(ν)ndχ(φ(E)) = f(µ)dχ(E).

Thus, f(µ) = µ for all µ ∈ C, and φ has the asserted form.

Finally we consider φ : G → Mn for G = SLn or GLn. The following lemma links the
dχ-preserving problem with the induced operators.
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Lemma 4.3 Let R = GLn, SLn or Mn. If a multiplicative map ψ : R → M|∆̄| sat-

isfies ψ(A)11 = dχ(At) then ψ(A) = S−1K(A)S for some invertible matrix S ∈ M|∆̄|.

Consequently, if φ : R → Mn is a multiplicative map preserving F (A) = dχ(A) then

K(φ(A)) = S−1K(A)S for some invertible matrix S ∈M|∆̄|.

Proof. Up to a similarity by a permutation matrix in M|∆̄|, dχ(At) can be viewed as the

(1, 1) entry of K(A). Hence we can assume that K(A) has the form

K(A) =
(
dχ(At) v(A)
u(A) Q(A)

)
.

Since K(In) = I|∆̄|, we see that for any α ∈ ∆̄ not equal to e = (1, . . . , n), v(In[e|α]) =

u(In[α|e])t is a nonzero multiple of the standard basis vector in CN with 1 at the α-th

position, where N = |∆̄| − 1. For each α ∈ ∆̄ not equal to e = (1, . . . , n) we construct Aα

such that {u(At
α) : e 6= α ∈ ∆̄} and {v(Aα) : e 6= α ∈ ∆̄} are two sets of linearly independent

vectors as follows:
if R contains M (k)

n , let Aα = In[e|α] ∈ R; if R = GLn, by continuity of dχ there exists

ε > 0 such that Aα = In[e|α] + εIn ∈ R satisfies our requirement; if R = SLn, we replace

the matrices Aα constructed in the case of GLn by det(Aα)−1/nAα.

Writing ψ(A) =
(
dχ(At) x(A)
y(A) R(A)

)
and inspecting the (1, 1) entry of ψ(Aα)ψ(At

β), we see

that
x(Aα)y(At

β) = dχ(AβA
t
α)− dχ(At

α)dχ(Aβ) = v(Aα)u(At
β).

Hence there exists an invertible S ∈MN such that x(Aα)S−1 = v(Aα) and Sy(At
β) = u(At

β).

We may assume that S = IN by replacing ψ by ([1]⊕ S)ψ(A)([1]⊕ S−1). We have x(Aα) =

v(Aα) and y(At
β) = u(At

β). Now

x(A)y(At
β) = dχ(AβA

t)− dχ(At)dχ(Aβ) = v(A)u(At
β) = v(A)y(At

β)

and hence x(A) = v(A). Finally we have

x(Aα)[y(A) R(A)] = [dχ(AtAt
α)− dχ(At

α)dχ(At)x(AαA)− dχ(At
α)x(A)]

= [dχ(AtAt
α)− dχ(At

α)dχ(At) v(AαA)− dχ(At
α)v(A)]

= v(Aα)[u(A) Q(A)]

= x(Aα)[u(A) Q(A)]

and so y(A) = u(A) and R(A) = Q(A), i.e. ψ(A) = K(A).

The last statement in the theorem follows from the fact that A 7→ K(φ(A)) is a multi-

plicative map with dχ(At) in the (1,1)-position.
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Theorem 4.4 Let G = GLn or SLn. Assume that dχ is not the determinant function. Then

φ : G→Mn satisfies
dχ(φ(A)) = dχ(A) for all A ∈ G

if and only if there exists S ∈ Sχ(Mn) such that φ has the form A 7→ S−1AS.

Proof. Let χ be the irreducible character of H such that χ(σ) = χ(σ−1). Let ψ be the

multiplicative map defined by ψ(A) = Kχ(φ(A)). Then ψ satisifes

ψ(A)ee = Kχ(φ(A))ee = dχ(φ(A)) = dχ(A) = dχ(At).

By Lemma 4.3, ψ(A) = R−1Kχ(A)R, that is, Kχ(φ(A)) = R−1Kχ(A)R for all A ∈ G. Then,

Eig(Kχ(φ(A))) = Eig(R−1Kχ(A)R) = Eig(Kχ(A)).

By Theorem 3.5 and the comment before Theorem 4.2, there exists S ∈ SLn such that φ

has the form A 7→ S−1AS.
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