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Abstract

The optimal parameter of the Hermitian/skew-Hermitian splitting (HSS) iteration method
for a real 2-by-2 linear system is obtained. The result is used to determine the optimal
parameters for linear systems associated with certain 2-by-2 block matrices, and to esti-
mate the optimal parameters of the HSS iteration method for linear systems with n-by-n
real coefficient matrices. Numerical examples are given to illustrate the results.

Keywords: Non-Hermitian matrix, Hermitian matrix, skew-Hermitian matrix, split-
ting iteration method, optimal iteration parameter.
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1 Introduction

To solve the large sparse non-Hermitian and positive definite system of linear equations

Ax = f, A ∈ Cn×n positive definite, A 6= A∗, and x, f ∈ Cn, (1.1)

Bai, Golub and Ng[2] recently proposed the Hermitian/skew-Hermitian splitting (HSS)
iteration method based on the fact that the coefficient matrix A naturally possesses the
Hermitian/skew-Hermitian (HS) splitting[10, 19]

A = H + S,

where
H =

1
2
(A+A∗) and S =

1
2
(A−A∗),

with A∗ being the conjugate transpose of the matrix A. They showed that this HSS itera-
tion converges unconditionally to the exact solution of the system of linear equations (1.1),
with the upper bound on convergence speed about the same as that of the conjugate gra-
dient method when applied to Hermitian matrices. Moreover, the upper bound of the
contraction factor is dependent on the spectrum of the Hermitian part H, but is inde-
pendent of the spectrum of the skew-Hermitian part S as well as the eigenvalues of the
matrices H, S and A. Numerical experiments have shown that the HSS iteration method
is very efficient and robust both as a solver and as a preconditioner (to Krylov subspace
methods such as GMRES and BiCGSTAB; see [15, 18]) for solving non-Hermitian and
positive definite linear systems.

To further improve the efficiency of the method, it is desirable to determine or find
a good estimate for the optimal parameter α∗. Unfortunately, there is no good method
in doing that. In this paper, we analyze 2-by-2 real matrices in detail, and obtain the
optimal parameter α∗ that minimizes the spectral radius of the iteration matrix of the
corresponding HSS method. We then use the results to determine the optimal param-
eters for linear systems associated with certain 2-by-2 block matrices, and to estimate
the optimal parameter α∗ of the HSS method for general n-by-n nonsymmetric positive
definite system of linear equations (1.1). Numerical examples are given to show that our
estimations improve previous results and are close to the values of the optimal parameters.

Unless specified otherwise, we assume throughout the paper that the non-Hermitian
matrix A ∈ Cn×n is positive definite, i.e., A 6= A∗ and its Hermitian part H = 1

2(A+A∗)
is Hermitian positive definite.

2 The HSS Iteration

Let us first review the HSS iteration method presented in Bai, Golub and Ng[2].

The HSS Iteration Method. Given an initial guess x(0) ∈ Cn, compute x(k)

for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies
the stopping criterion:{

(αI +H)x(k+ 1
2
) = (αI − S)x(k) + f,

(αI + S)x(k+1) = (αI −H)x(k+ 1
2
) + f,
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where α is a given positive constant.

In matrix-vector form, the above HSS iteration method can be equivalently rewritten as

x(k+1) = M(α)x(k) + G(α)f, k = 0, 1, 2, . . . , (2.1)

where
M(α) = (αI + S)−1(αI −H)(αI +H)−1(αI − S) (2.2)

and
G(α) = 2α(αI + S)−1(αI +H)−1.

Here, M(α) is the iteration matrix of the HSS method. In fact, (2.1) may also result from
the splitting

A = B(α)− C(α)

of the coefficient matrix A, with{
B(α) = 1

2α(αI +H)(αI + S),
C(α) = 1

2α(αI −H)(αI − S).

The following theorem established in [2] describes the convergence property of the HSS
iteration.

Theorem 2.1. Let A ∈ Cn×n be a positive definite matrix, H = 1
2(A + A∗) and S =

1
2(A − A∗) be its Hermitian and skew-Hermitian parts, respectively, and α be a positive
constant. Then the spectral radius ρ(M(α)) of the iteration matrix M(α) of the HSS
iteration (see (2.2)) is bounded by

σ(α) = max
λj∈λ(H)

|α− λj |
|α+ λj |

,

where λ(·) represents the spectrum of the corresponding matrix. Consequently, we have

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the HSS iteration converges to the exact solution x∗ ∈ Cn of the system of linear
equations (1.1).

Moreover, if γmin and γmax are the lower and the upper bounds of the eigenvalues of the
matrix H, respectively, then

α̃ ≡ arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣α− λ

α+ λ

∣∣∣∣} =
√
γminγmax

and

σ(α̃) =
√
γmax −

√
γmin√

γmax +
√
γmin

=

√
κ(H)− 1√
κ(H) + 1

,

where κ(H) is the spectral condition number of H.
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Of course, α̃ is usually different from the optimal parameter

α∗ = arg min
α
ρ(M(α)),

and it always holds that
ρ(M(α∗)) ≤ σ(α̃).

Numerical experiments in [2] have confirmed that in most situation, ρ(M(α∗)) � σ(α̃).
See [3, 12, 6, 16, 1, 13, 8, 14, 11, 7] for further applications and generalizations of the HSS
iteration method.

3 The Real Two-By-Two Case

In this section, we study linear systems associated with a real 2-by-2 matrix A with positive
definite symmetric part. We first determine the eigenvalues of M(α) defined in (2.2). The
following theorem is stated in general terms so that it can be used more conveniently for
future discussion.

Theorem 3.1. Let A = H+S ∈ R2×2 be such that H is symmetric positive definite and S
is skew-symmetric. Suppose H has eigenvalues λ1 ≥ λ2 > 0 and det(S) = q2 with q ∈ R.
Then the two eigenvalues of the iteration matrix M(α) defined in (2.2) are

λ± =
(α2 − λ1λ2)(α2 − q2)±

√
(α2 − λ1λ2)2(α2 − q2)2 − (α2 − λ2

1)(α2 − λ2
2)(α2 + q2)2

(α+ λ1)(α+ λ2)(α2 + q2)
.

As a result, if

(α2 − λ1λ2)2(α2 − q2)2 ≥ (α2 − λ2
1)(α

2 − λ2
2)(α

2 + q2)2,

then ρ(M(α)) equals to

|α2 − λ1λ2||α2 − q2|+
√

(α2 − λ1λ2)2(α2 − q2)2 − (α2 − λ2
1)(α2 − λ2

2)(α2 + q2)2

(α+ λ1)(α+ λ2)(α2 + q2)
;

if
(α2 − λ1λ2)2(α2 − q2)2 < (α2 − λ2

1)(α
2 − λ2

2)(α
2 + q2)2,

then ρ(M(α)) equals to √
(α− λ1)(α− λ2)
(α+ λ1)(α+ λ2)

.

Proof. Let A = H + S ∈ R2×2, where H is symmetric positive definite, and S is skew-
symmetric. Then there is an orthogonal matrix Q ∈ R2×2 such that QtHQ is a diagonal
matrix with diagonal entries λ1 and λ2, where Qt denotes the transpose matrix of Q.
We may replace A by QtAQ without changing the assumptions and conclusions of our
theorem. So, assume that

H =
[
λ1 0
0 λ2

]
and S =

[
0 q
−q 0

]
with q ∈ R.
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Then (αI +H)−1(αI −H)(αI + S)−1(αI − S) equals

1
α2 + q2

·

[
(α2−q2)(α−λ1)

α+λ1
−2qα(α−λ1)

α+λ1
2qα(α−λ2)

α+λ2

(α2−q2)(α−λ2)
α+λ2

]
.

The formula for λ± and the assertion on ρ(M(α)) follow. 2

One may want to use the formula of ρ(M(α)) in Theorem 3.1 to determine the optimal
choice of α. It turns out that the analysis is very complicated and not productive. The
main difficulty is the expression√

(α2 − λ1λ2)2(α2 − q2)2 − (α2 − λ2
1)(α2 − λ2

2)(α2 + q2)2 (3.1)

in the formula of ρ(M(α)). For example, one may see [5] for the analysis of a similar and
simpler problem. Here, we use a different approach that allows us to avoid the complicated
expression (3.1).

For notational simplicity, we write

ρ(α) = ρ(M(α)).

Define

φ(α) =
{

trace (M(α))
2

}2

=
{

(α2 − q2)(α2 − λ1λ2)
(α2 + q2)(α+ λ1)(α+ λ2)

}2

,

ψ(α) = det (M(α)) =
(α− λ1)(α− λ2)
(α+ λ1)(α+ λ2)

,

and
ω(α) = max{φ(α), |ψ(α)|}.

Evidently,
ρ(α)2 ≥ ω(α).

Moreover,
1 = φ(0) = lim

α→+∞
φ(α) and 1 = ψ(0) = lim

α→+∞
ψ(α).

Thus,
lim

α→+∞
ω(α) = ω(0) = 1 > ω(ξ) for all ξ > 0.

Since ω(α) is continuous and nonnegative, there exists α∗ > 0 such that

ω(α∗) = min{ω(α) | α > 0}.

We will show that
φ(α∗) = |ψ(α∗)|. (3.2)

As a result, the eigenvalues of M(α∗) have the same modulus, and thus

ρ(α)2 ≥ ω(α) ≥ ω(α∗) = ρ(α∗)2, for all α > 0.

By the above discussion, establishing (3.2) will lead to the following theorem.
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Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied and define the functions
φ and ψ as above. Then the optimal α∗ > 0 satisfying

ρ(M(α∗)) = min{ρ(M(α)) | α > 0}

lies in the finite set
S = {α > 0 | φ(α) = |ψ(α)|},

which consists of numbers α > 0 satisfying

(α2 + q2)2(α2 − λ2
1)(α

2 − λ2
2) = (α2 − q2)2(α2 − λ1λ2)2 (3.3)

or
(α2 + q2)2(λ2

1 − α2)(α2 − λ2
2) = (α2 − q2)2(α2 − λ1λ2)2. (3.4)

Proof. We only need to demonstrate the validity of (3.2), i.e.,

φ(α∗) = |ψ(α∗)|.

Note that φ(α) is continuously differentiable for α > 0, and |ψ(α)| is continuous for
α > 0 and differentiable except for α = λ1 and λ2. Since ω(α) = max{φ(α), |ψ(α)|}, if
α∗ satisfies

ω(α∗) = min{ω(α) | α > 0},

then one of the following holds.
(i) φ(α∗) = |ψ(α∗)|;
(ii) φ(α∗) > |ψ(α∗)| and φ(α∗) is a local minimum of φ(α);
(iii) |ψ(α∗)| > φ(α∗) and |ψ(α∗)| is a local minimum of |ψ(α)|.

First, we claim that (iii) cannot happen. To see this, note that

ψ′(α) =
2(λ1 + λ2)(α2 − λ1λ2)

[(α+ λ1)(α+ λ2)]
2 ,

which is positive or negative according to α >
√
λ1λ2 or α <

√
λ1λ2, respectively, and

ψ′
(√
λ1λ2

)
= 0. Because λ1 ≥

√
λ1λ2 ≥ λ2, we see that |ψ(α)| = ψ(α) is differentiable

and decreasing on (0, λ2), and |ψ(α)| = ψ(α) is differentiable and increasing on (λ1,+∞).
Thus, there cannot be α∗ in (0, λ2) ∪ (λ1,+∞) satisfying (iii). Furthermore, |ψ(λj)| = 0
for j = 1, 2; so, it is impossible to have α∗ = λj satisfying (iii). Finally, |ψ(α)| = −ψ(α)
is differentiable on (λ2, λ1) with a local maximum at

√
λ1λ2. Thus, there cannot be α∗ in

(λ2, λ1) satisfying (iii).
Next, we show that (ii) cannot happen. The analysis is more involved. Instead of φ(α),

we consider its square root

F (α) =
(α2 − q2)(α2 − λ1λ2)

(α2 + q2)(α+ λ1)(α+ λ2)
=
(

1− 2q2

α2 + q2

)(
1− λ1

α+ λ1
− λ2

α+ λ2

)
.
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Then

F ′(α) =
4q2α

(α2 + q2)2
(α2 − λ1λ2)

(α+ λ1)(α+ λ2)
+

(α2 − q2)
(α2 + q2)

(
λ1

(α+ λ1)2
+

λ2

(α+ λ2)2

)
=

λ1 + λ2

(α2 + q2)2(α+ λ1)2(α+ λ2)2
· P (α),

where

P (α) = α6 +
4(λ1λ2 + q2)
λ1 + λ2

α5 + (λ1λ2 + 4q2)α4

−q2(q2 + 4λ1λ2)α2 − 4q2λ1λ2(q2 + λ1λ2)
λ1 + λ2

α− λ1λ2q
4.

Suppose q ≤
√
λ1λ2. Then F ′(α) < 0 for α ∈ (0, q), and F ′(α) > 0 for α ∈

(
√
λ1λ2,+∞). So, F (α) is decreasing on (0, q) and increasing on [

√
λ1λ2,+∞). Hence,

φ(α) = F (α)2 cannot have a local minimum in these two intervals. Thus, there cannot
be an α∗ in these intervals satisfying (ii). Because φ(q) = φ

(√
λ1λ2

)
= 0, we cannot have

α∗ = q or
√
λ1λ2 satisfying (ii).

Next, we claim that F (α) has only one critical point in
(
q,
√
λ1λ2

)
, which is a local

minimum. This point will be the unique critical point for φ(α) = F (α)2 on
(
q,
√
λ1λ2

)
,

which is a local maximum. Thus, there cannot be an α∗ in this interval satisfying (ii).
To prove our claim, note that α > 0 is a critical point of F (α) if and only if α is a zero

of P (α). So, it suffices to show that P (α) only has one positive zero. Now,

P ′′(α) = 30α4 +
80(λ1λ2 + q2)

λ1 + λ2
α3 + 12(λ1λ2 + 4q2)α2 − 2q2(q2 + 4λ1λ2).

Since P ′′(0) < 0 and limα→+∞ P ′′(α) = +∞, we see that P ′′(α) has a positive zero.
However, P ′′(α) cannot have two or more positive zeros (counting multiplicity). Otherwise,

P ′′′(α) = 120α3 +
240(λ1λ2 + q2)

λ1 + λ2
α2 + 24(λ1λ2 + 4q2)α

has a positive zero, which is impossible. Next, we argue that

P ′(α) = 6α5 +
20(λ1λ2 + q2)

λ1 + λ2
α4 + 4(λ1λ2 + 4q2)α3

−2q2(q2 + 4λ1λ2)α−
4q2λ1λ2(q2 + λ1λ2)

λ1 + λ2

has exactly one positive zero. Since P ′(0) < 0 and limα→+∞ P ′(α) = +∞, we see that
P ′(α) has a positive zero. Since P ′′(0) < 0 and P ′′(α) only has one positive zero α1, we
see that P ′(α) is decreasing on (0, α1) and increasing on (α1,+∞). So, P ′(α) can only
have one positive zero α2 > α1.

We can apply the same argument to P (α). Since P (0) < 0 and limα→+∞ P (α) = +∞,
we see that P (α) has a positive zero. Since P ′(0) < 0 and P ′(α) only has one positive
zero α2, we see that P (α) is decreasing on (0, α2) and increasing on (α2,+∞). So, P (α)
can only have one positive zero α3 > α2, and our claim is proved.

One can use a similar argument to get the desired conclusion if q >
√
λ1λ2. We omit

the discussion. 2
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Remark 3.3. Using the absolute value function, we can combine (3.3) and (3.4) to a
single equation

|(α2 + q2)2(λ2
1 − α2)(α2 − λ2

2)| = [(α2 − q2)(α2 − λ1λ2)]2.

Nonetheless, the polynomial equations are easier to solve and use. In fact, if λ1 = λ2 = λ∗,
then (3.3) and (3.4) only has one positive solution, namely, α = λ∗. Suppose λ1 > λ2. If
we use the substitution β = α2, then (3.3) reduces to the quadratic equation

[(λ1 − λ2)2 − 4q2]β2 + 2q2(λ1 + λ2)2β + q2[q2(λ1 − λ2)2 − 4λ2
1λ

2
2] = 0,

which has solutions
q(2λ1λ2 − qλ1 + qλ2)

λ1 − λ2 + 2q
and

−q(2λ1λ2 + qλ1 − qλ2)
λ1 − λ2 − 2q

if |λ1 − λ2| 6= 2q. Otherwise, the equation is linear and has a solution

β =
2(q4 − λ2

1λ
2
2)

(λ1 + λ2)2
=

2(q2 + λ1λ2)(q2 − λ1λ2)
(λ1 + λ2)2

=
(λ1 + λ2)2(q2 − λ1λ2)

2(λ1 + λ2)2
=

1
2
(q2 − λ1λ2).

Of course, these solutions will be useful only if they are positive and lie outside the interval
[λ2

2, λ
2
1]. Similarly, by the substitution β = α2, (3.4) reduces to the quartic equation

2β4 − (λ1 + λ2)2β3 + 2[λ2
1λ

2
2 − q2(λ1 − λ2)2 + q4]β2 − q4(λ1 + λ2)2β + 2q4λ2

1λ
2
2 = 0, (3.5)

which has exactly two solutions µ1 and µ2 with µ1 ∈ [λ2
2, λ1λ2) and µ2 ∈ ((λ2

1 +λ2
2)/2, λ

2
1].

Furthermore, if q2 ∈ [λ2
2, λ

2
1] then µ1 ≤ q2 and µ2 ≥ q2. In particular, if q = λi for

i ∈ {1, 2} then β = λ2
i is a solution. The verification of the above statements will be given

in the last section.

As an illustration of Theorems 3.1 and 3.2 as well as Remark 3.3, we consider a simple
example for which λ1 = 2, λ2 = 1 and q = 1. By straightforward computations, we know
that the only positive roots of the equation (3.3) are α∗1 = 1 and α∗2 =

√
5, and those of

the equation (3.4) are α∗3 = 1 and

α∗4 =
√

6
6

√√√√(7 +
3

√
712 + 9

√
5277 +

43
3
√

712 + 9
√

5277

)
≈ 1.914.

We remark that now equation (3.4) is equivalent to (β− 1)(2β3− 7β2 +β− 8) = 0. Based
on Theorem 3.1, from direct calculations we have

ρ(M(α∗1)) = ρ(M(α∗3)) = 0, ρ(M(α∗2)) =
√

3(7− 3
√

5)
6

≈ 0.0842

and
ρ(M(α∗4)) ≈ 0.201.

Therefore, for the HSS iteration method, the optimal parameter is α∗ = 1 and the cor-
responding optimal convergence factor is ρ(M(α∗)) = 0. On the other hand, from Theo-
rem 2.1 we can easily obtain

α̃ =
√

2 ≈ 1.414 and σ(α̃) = 3− 2
√

2 ≈ 0.172.

Obviously, it holds that ρ(M(α∗)) < σ(α̃).
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Remark 3.4. Note that in our proof of Theorem 3.2, we get much information for the
function ω(α) = max{φ(α), |ψ(α)|} with α > 0. In particular, we show that all the local
minima of ω(α) satisfy

φ(α) = |ψ(α)|,
and they are the roots of (3.3) and (3.4). Moreover, the local minima of ω(α) are also
local minima of ρ(α), and that the global minimum of ρ(α) and ω(α) occur at the same
α∗. If one can prove independently that the local minima ρ(α) always occur when the
eigenvalues of M(α) have the same magnitude, then one can conclude that the functions
ω(α) and ρ(α) have the same local and global minima. Once again, this is difficult to do
because of the expression (3.1) in ρ(α) = ρ(M(α)).

Using the notations defined in Theorem 3.1, we immediately get the following conclusion
from Theorem 3.2.

Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then the optimal α∗ > 0
satisfying

ρ(M(α∗)) = min{ρ(M(α)) | α > 0}
is a positive root of the equation

(α2 + q2)2(α2 − λ2
1)(α

2 − λ2
2) = (α2 − q2)2(α2 − λ1λ2)2

or
(α2 + q2)2(λ2

1 − α2)(α2 − λ2
2) = (α2 − q2)2(α2 − λ1λ2)2.

Remark 3.6. The first equation in Corollary 3.5 can be reduced to a quadratic equa-
tion and the second one can be reduced to a quartic equation with respect to β = α2,
respectively, analogously to those in Remark 3.3.

Remark 3.7. Note that the results in this section are also valid if λ1 > 0 = λ2 and q 6= 0.

Remark 3.8. We should point out again that Theorem 3.2 has been established only for
real matrices. For complex matrices, how to determine the optimal iteration parameter of
the HSS iteration method is still an open problem.

4 Two-By-Two Block Matrices

In this section, we determine the optimal parameter α∗ for a 2-by-2 block matrix of the
form

A =
[
λ1Ir E
−E∗ λ2Is

]
, (4.1)

where λ1 > λ2 > 0. Note that the case when λ1 = λ2 is trivial 1. Systems of linear
equations with the 2-by-2 block matrices (4.1) arise in many applications; for details we

1If λ1 = λ2 ≡ λ∗, then the iteration matrix of the HSS iteration method is given byM(α) = α−λ∗

α+λ∗ Q(α),

where Q(α) := (αI +S)−1(αI−S) is a Cayley transform of S and is, thus, unitary, and S =

[
0 E
−E∗ 0

]
;

see (2.2). Obviously, it holds that ρ(M(α)) = |α−λ∗|
α+λ∗ . Therefore, for the HSS iteration method applied to

this special linear system, the optimal parameter is α∗ = λ∗ and the corresponding optimal convergence
factor is ρ(M(α∗)) = 0.
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refer the readers to [17, Chapter 6], [9, Chapters 4, 5 and 10], [20, 10, 4, 5] and references
therein. According to Young[20] and Varga[17], the matrix A in (4.1) is called a 2-cyclic
matrix, and is connected with property A.

Theorem 4.1. Suppose that the matrix A ∈ Cn×n defined in (4.1) satisfies λ1 > λ2 > 0,
and the nonzero matrix E ∈ Cr×s has nonzero singular values q1 ≥ q2 ≥ · · · ≥ qk. Let

H =
1
2
(A+A∗) =

[
λ1Ir 0

0 λ2Is

]
and S =

1
2
(A−A∗) =

[
0 E

−E∗ 0

]
be the Hermitian and the skew-Hermitian parts of the matrix A, respectively. Then, for the
correspondingly induced HSS iteration method, the spectral radius ρ(M(α)) of its iteration
matrix M(α) (see (2.2)) attains the minimum at α∗, which is a root of one of the following
equations:

(α−
√
λ1λ2)(α−

√
q1qk) = 0,

(α2 + q2j )
2(α2 − λ2

1)(α
2 − λ2

2) = (α2 − q2j )
2(α2 − λ1λ2)2

or
(α2 + q2j )

2(λ2
1 − α2)(α2 − λ2

2) = (α2 − q2j )
2(α2 − λ1λ2)2,

where j = 1, k.

Proof. Suppose A satisfies the hypotheses of the theorem. Then A is unitarily similar

to A1⊕· · ·⊕Ak⊕λ1Iu⊕λ2Iv, where ⊕ denotes the matrix direct sum, Aj =
[
λ1 qj
−qj λ2

]
,

u = r − k and v = s− k. For α > 0, define

ρ(α) = ρ(M(α)) and ρj(α) = ρ(Mj(α)),

where M(α) is unitarily similar to M1(α)⊕ · · ·⊕Mk(α)⊕ α−λ1
α+λ1

Iu⊕ α−λ2
α+λ2

Iv, with Mj(α)
being the HSS iteration matrix associated with Aj for j = 1, 2, . . . , k. Furthermore, define

fj(α) = |α− λj |/|α+ λj | for j = 1, 2.

Consider four cases.

Case 1. If r > k and s > k, then f1(α) and f2(α) are eigenvalues of M(α) and

ρ(α) = max{|f1(α)|, |f2(α)|}

is the largest singular value of M(α). Thus,

ρ(α∗) = ρ
(√

λ1λ2

)
=
√
λ1 −

√
λ2√

λ1 +
√
λ2
.

Case 2. Suppose r > k and s = k. Let ρ0(α) = f1(α). Then

ρ(α) = max{ρj(α) | 0 ≤ j ≤ k}.

For α ∈
(
0,
√
λ1λ2

]
,

ρ(α) = ρ0(α) = f1(α)
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is the largest singular value of M(α). If α ≥ (λ3
1/λ2)1/2, then

f1(α) =
∣∣∣∣α− λ1

α+ λ1

∣∣∣∣ = ∣∣∣∣1− 2λ1

α+ λ1

∣∣∣∣ ≥ ∣∣∣∣1− 2λ1√
λ1λ2 + λ1

∣∣∣∣ = ρ
(√

λ1λ2

)
.

Thus, ρ(α) ≥ ρ
(√
λ1λ2

)
if α ∈

[
0, (λ1λ2)1/2

]
∪
[
(λ3

1/λ2)1/2,+∞
)
. So, we focus on the

interval
J =

(
(λ1λ2)1/2, (λ3

1/λ2)1/2
)
.

For α ∈ J , let

φj(α) =
{

trace (Mj(α))
2

}2

=

{
(α2 − q2j )(α

2 − λ1λ2)
(α2 + q2j )(α+ λ1)(α+ λ2)

}2

and
ψ(α) = det (Mj(α)) =

(α− λ1)(α− λ2)
(α+ λ1)(α+ λ2)

, j = 1, 2, . . . , k.

Clearly, ψ(α) is independent of the index j. By Theorem 3.1, if φj(α) ≥ ψ(α), then

ρj(α) =
√
φj(α) +

√
φj(α)− ψ(α);

otherwise,

ρj(α) =

√
(α− λ1)(α− λ2)
(α+ λ1)(α+ λ2)

.

We claim that

max{ρj(α) : 1 ≤ j ≤ k} = max{ρ1(α), ρk(α)}, α ∈ J.

Suppose 1 < j < k. If φj(α) < ψ(α) then

ρj(α) =

√
(α− λ1)(α− λ2)
(α+ λ1)(α+ λ2)

,

and min{φ1(α), φk(α)} ≤ φj(α) < ψ(α). It follows that ρ1(α) = ρj(α) or ρk(α) = ρj(α).
If φj(α) ≥ ψ(α) and α ≥ q2j , then

0 ≤ φj(α) ≤ φk(α),

and hence

ρj(α) =
√
φj(α) +

√
φj(α)− ψ(α) ≤

√
φk(α) +

√
φk(α)− ψ(α) = ρk(α);

if φj(α) ≥ ψ(α) and α < q2j , then

0 < φj(α) ≤ φ1(α)

and hence

ρj(α) =
√
φj(α) +

√
φj(α)− ψ(α) ≤

√
φ1(α) +

√
φ1(α)− ψ(α) = ρ1(α).
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Thus, our claim is proved.
For each α ∈ J , we have√

|α− λ1|/|α+ λ1| ≤
√
|α− λ2|/|α+ λ2|,

and hence

ρ0(α) =
∣∣∣∣α− λ1

α+ λ1

∣∣∣∣ ≤
√∣∣∣∣(α− λ1)(α− λ2)

(α+ λ1)(α+ λ2)

∣∣∣∣ ≤ max{ρ1(α), ρk(α)}.

Combining the above, we see that

ρ(α) = max{ρ1(α), ρk(α)}, α ∈ J.

Let
Ω(α) = max{φ1(α), φk(α), |ψ(α)|}.

Then
Ω(α) ≤ max{ρ1(α)2, ρk(α)2}.

If α∗ ∈ J is such that Ω(α∗) ≤ Ω(α) for all α ∈ J , then one of the following holds.

(1) φ1(α∗) = φk(α∗) = |ψ(α∗)|;

(2.a) φ1(α∗) = φk(α∗) > |ψ(α∗)|, α∗ is a local minimum of the function max{φ1(α), φk(α)},

(2.b) φ1(α∗) = |ψ(α∗)| > φk(α∗), α∗ is a local minimum of the function max{φ1(α), |ψ(α)|},

(2.c) φk(α∗) = |ψ(α∗)| > φ1(α∗), α∗ is a local minimum of the function max{φk(α), |ψ(α)|};

(3.a) max{φ1(α∗), φk(α∗)} < |ψ(α∗)| and α∗ is a local minimum of the function |ψ(α∗)|,

(3.b) max{φ1(α∗), |ψ(α∗)|} < φk(α∗) and α∗ is a local minimum of the function φk(α∗),

(3.c) max{φk(α∗), |ψ(α∗)|} < φ1(α∗) and α∗ is a local minimum of the function φ1(α∗).

By the proof of Theorem 3.2, we see that the function |ψ(α)| has a differentiable local
maximum at α > 0, and two non-differentiable local minima at λ2 and λ1, where ψ(λ1) =
ψ(λ2) = 0. Thus, condition (3.a) cannot hold. Similarly, for j = 1, k, the proof of Theorem
3.2 shows that the function φj(α) has a local maximum at α > 0, and two local minima at
|qj | and

√
λ1λ2, where φj(|qj |) = φj(

√
λ1λ2) = 0. Thus, none of conditions (3.b) or (3.c)

holds.

Now suppose that (1) or (2.a) holds. Then φ1(α∗) = φk(α∗) implies that α∗ =
√
q1qk.

In both cases, we have

ρ1(α∗) =
√
φ1(α∗) +

√
φ1(α∗)− ψ(α∗) =

√
φk(α∗) +

√
φk(α∗)− ψ(α∗) = ρk(α∗),

and Ω(α∗) = max{ρ1(α∗)2, ρk(α∗)2}.

Suppose that (2.b) holds. If φk(α∗) ≥ ψ(α∗), then

ρk(α∗) =
√
φk(α∗) +

√
φk(α∗)− ψ(α∗) <

√
φ1(α∗) +

√
φ1(α∗)− ψ(α∗) = ρ1(α∗);
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otherwise,

ρk(α∗) =

√
(α∗ − λ1)(α∗ − λ2)
(α∗ + λ1)(α∗ + λ2)

≤ ρ1(α∗).

Thus, Ω(α∗) = ρ1(α∗)2 = max{ρ1(α∗)2, ρk(α∗)2}. Moreover, since α∗ is a local minimum
of the function max{φ1(α), |ψ(φ)|}, by Remark 3.4 we see that α∗ is a root of the equation

(α2 + q21)
2(α2 − λ2

1)(α
2 − λ2

2) = (α2 − q21)
2(α2 − λ1λ2)2

or
(α2 + q21)

2(λ2
1 − α2)(α2 − λ2

2) = (α2 − q21)
2(α2 − λ1λ2)2.

Suppose that (2.c) holds. We can use an argument similar to the case of (2.b) to
conclude that Ω(α∗) = ρk(α∗)2 = max{ρ1(α∗)2, ρk(α∗)2} and that α∗ is a root of the
equation

(α2 + q2k)
2(α2 − λ2

1)(α
2 − λ2

2) = (α2 − q2k)
2(α2 − λ1λ2)2

or
(α2 + q2k)

2(λ2
1 − α2)(α2 − λ2

2) = (α2 − q2k)
2(α2 − λ1λ2)2.

Note that in all the cases (1), (2.a), (2.b), and (2.c), we have

Ω(α∗) = max{ρ1(α∗)2, ρk(α∗)2}.

Consequently, if α∗ ∈ J yields the smallest Ω(α), then

ρ(α)2 = max{ρ1(α)2, ρk(α)2} ≥ Ω(α) ≥ Ω(α∗) = max{ρ1(α∗)2, ρk(α∗)2} = ρ(α∗)2.

So, we only need to consider those α satisfying the specified equations in the theorem to
determine the optimal parameter α∗.

Case 3. Suppose r = k and s > k. Let ρ0(α) = f2(α). Then

ρ(α) = max{ρj(α) | 0 ≤ j ≤ k}.

Similarly to the proof of Case 2, we can show that

ρ(α) ≥ ρ(
√
λ1λ2)

if α is positive and lies outside the interval

J =
(
(λ3

2/λ1)1/2, (λ1λ2)1/2
)
.

So, we can focus on the interval J .
For α ∈ J , we have

ρ(α) = max{ρ1(α), ρk(α)}.

Note that in this case, for each α ∈ J , we have√
|α− λ2|/|α+ λ2| ≤

√
|α− λ1|/|α+ λ1|,
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and hence

ρ0(α) =
∣∣∣∣α− λ2

α+ λ2

∣∣∣∣ ≤
√∣∣∣∣(α− λ1)(α− λ2)

(α+ λ1)(α+ λ2)

∣∣∣∣ ≤ max{ρ1(α), ρk(α)}.

Finally, if α∗ ∈ J is such that ρ(α∗) < ρ(
√
λ1λ2), we can show that α∗ must satisfy one of

the three specified equations using an argument similar to the one in Case 2.

Case 4. Suppose r = s = k. Then

ρ(α) = max{ρj(α) | 1 ≤ j ≤ k}.

Note that if α is positive and lies outside the interval

J =
(
(λ3

2/λ1)1/2, (λ3
1/λ2)1/2

)
,

then each of the singular values of M(α), which is equal to |α − λ1|/|α + λ1| or |α −
λ2|/|α+ λ2|, has magnitude larger than ρ(

√
λ1λ2). Thus

ρ(α) ≥ |det(M(α))|1/n ≥ ρ(
√
λ1λ2).

So, we can focus on those α ∈ J . For each α ∈ J , we can show that

ρ(α) = max{ρ1(α), ρk(α)}.

Moreover, if α∗ ∈ J is such that ρ(α∗) < ρ(
√
λ1λ2), we can show that α∗ must satisfy one

of the three specified equations. 2

Remark 4.2. The second group of equations in Theorem 4.1 can be reduced to a group
of quadratic equations and the last one can be reduced to a group of quartic equations
with respect to β = α2, respectively, analogously to those in Remark 3.3.

As an illustration of Theorem 4.1 and Remark 4.2, we consider a simple example for
which λ1 = 2, λ2 = 1, q1 = 1 and qk = 2. Obviously, α∗0 =

√
2 ≈ 1.414 is the root

of the first equation in Theorem 4.1. In addition, by straightforward computations, we
know that the only positive roots of the group of the equations with respect to q1 = 1 in
Theorem 4.1 are

α∗1 = 1, α∗2 =
√

5 ≈ 2.236

and

α∗3 =
√

6
6

√√√√(7 +
3

√
712 + 9

√
5277 +

43
3
√

712 + 9
√

5277

)
≈ 1.914,

and those with respect to qk = 2 in Theorem 4.1 are

α∗4 = 2, α∗5 =
√

20
5

≈ 0.894

and

α∗6 =
√

6
6

√√√√(1 +
3

√
1477 + 36

√
5277− 167

3
√

1477 + 36
√

5277

)
≈ 1.045.



The Optimal Parameter in HSS Method 15

We remark that now the second one in the group of equations with respect to q1 = 1 is
equivalent to (β− 1)(2β3− 7β2 +β− 8) = 0, and the second one in the group of equations
with respect to qk = 2 is equivalent to (β − 4)(2β3 − β2 + 28β − 32) = 0. Based on
Theorem 3.1, from direct calculations we have

ρ(M(α∗0)) = 3− 2
√

2 ≈ 0.172, ρ(M(α∗1)) = 0, ρ(M(α∗2)) =
√

3(7− 3
√

5)
6

≈ 0.0842

and

ρ(M(α∗3)) ≈ 0.201, ρ(M(α∗4)) = 0, ρ(M(α∗5)) ≈ 0.146, ρ(M(α∗6)) ≈ 0.0899.

Therefore, for the HSS iteration method, the optimal parameter is α∗ = 1 or α∗ = 2 and
the corresponding optimal convergence factor is ρ(M(α∗)) = 0. On the other hand, from
Theorem 2.1 we can easily obtain

α̃ =
√

2 and σ(α̃) = 3− 2
√

2 ≈ 0.172.

Obviously, it holds that ρ(M(α∗)) < σ(α̃).

Remark 4.3. Our proof techniques can be used to handle the case when λ2 = 0, which
also occur in applications; see [4] and its references. In such case, we may normalize
λ1 = 1, and we always assume that s = k to ensure that A is invertible. In such case, we
can use the analysis of Case 2 and Case 4 in our proof of Theorem 4.1. Note that in this
case, we have

ψ(α) =
α− 1
α+ 1

, φj(α) =

{
(α2 − q2j )α

(α2 + q2j )(α+ λ1)

}2

for j = 1, k.

If q1 = qk, then A is unitarily similar to

A1 ⊕ · · · ⊕Ak ⊕ Iu

with

Aj =
[

1 q1
−q1 0

]
, j = 1, 2, . . . , k.

So, the analysis reduces to the 2-by-2 case, and Theorem 3.2 applies.
Suppose q1 > qk > 0. Then the optimal value α∗ can be easily determined by checking

whether ρ1(α) and ρk(α) intersect at a point α∗ such that

φ1(α∗)− ψ(α∗) = φk(α∗)− ψ(α∗) ≥ 0.

This happens if and only if q1qk ≤ 1
2(q1 + qk). In this case, α∗ =

√
q1qk is the optimal

parameter, and

ρ(M(α∗)) =
q1 − qk
q1 + qk

 √
q1qk√

q1qk + 1
+

√
(q1 + qk)2 − 4q21q

2
k

(
√
q1qk + 1)(q1 − qk)

 .



16 Z.-Z. Bai, G.H. Golub and C.-K. Li

Otherwise, α∗ = q1√
2q1−1

is the optimal parameter such that φ1(α∗) = ψ(α∗) > φk(α∗) and

ρ(M(α∗)) =
|q1 − 1|

q1 +
√

2q1 − 1
.

Note that the second case rarely appears in applications and its discussion was not included
in [4]. Also, note that there were some typos in the formula of ρ(M(α∗)) for the first case
in [4].

5 Estimation of Optimal Parameters for n-By-n Matrices
and Numerical Examples

In general, for a nonsymmetric and positive definite system of linear equations (1.1),
the eigenvalues of its coefficient matrix A is evidently contained in the complex domain
DA := [λmin, λmax]×ı[−q, q], where ı is the imaginary unit, λmin and λmax are, respectively,
the smallest and the largest eigenvalues of the Hermitian part H, and q is the largest
module of the eigenvalues of the skew-Hermitian part S, of the coefficient matrix A. If a
reduced (simpler and lower-dimensional) matrix AR whose eigenvalues possess the same
contour as the domain DA is used to approximate the matrix A, then we may expect
that the main mathematical and numerical properties of the HSS iteration method for the
original linear system with the coefficient matrix A can be roughly preserved by the HSS
iteration method applied to the linear system with the reduced coefficient matrix AR. A
simple choice of the reduced matrix is given by

AR =
[
λmax q
−q λmin

]
with q = ‖S‖ or q = ρ(H−1S)

√
λminλmax. We can then use Theorem 3.2 and Corollary 3.5

to estimate the optimal parameter α∗ of the HSS iteration method as follows.

Estimation 5.1. Let A ∈ Rn×n be a positive definite matrix, and H,S ∈ Rn×n be its
symmetric and skew-symmetric parts, respectively. Let λmin = min{λ | λ ∈ λ(H)} and
λmax = max{λ | λ ∈ λ(H)}. Suppose

q = ‖S‖ or q = ρ(H−1S)
√
λminλmax.

Then one can use the positive roots of the equation

(α2 + q2)2(α2 − λ2
max)(α

2 − λ2
min) = (α2 − q2)2(α2 − λminλmax)2

or
(α2 + q2)2(λ2

max − α2)(α2 − λ2
min) = (α2 − q2)2(α2 − λminλmax)2

to estimate the optimal parameter α∗ > 0 satisfying

ρ(M(α∗)) = min{ρ(M(α)) | α > 0}.

Here, M(α) is the iteration matrix of the HSS iteration method, see (2.2).
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We first illustrate our estimates with the following example of a general nonsymmetric
positive definite system of linear equations, see [2].

Consider the two-dimensional convection-diffusion equation

−(uxx + uyy) + δ(ux + uy) = g(x, y)

on the unit square [0, 1] × [0, 1], with constant coefficient δ and subject to Dirichlet-
type boundary conditions. When the five-point centered finite difference discretization is
applied to it, we get the system of linear equations (1.1) with the coefficient matrix

A = T ⊗ I + I ⊗ T, (5.1)

where the equidistant step-size h = 1
m+1 is used in the discretization on both directions and

the natural lexicographic ordering is employed to the unknowns. In addition, ⊗ denotes
the Kronecker product, T is a tridiagonal matrix given by

T = tridiag(−1−Re, 2,−1 +Re),

and
Re =

δh

2
is the mesh Reynolds number. We remark that here the first-order derivatives are also
approximated by the centered difference scheme.

From Lemma A.1 in [2, Appendix], we know that γmin ≡ λmin = min
1≤j,k≤m

λj,k(H) = 4(1− cos(πh)),

γmax ≡ λmax = max
1≤j,k≤m

λj,k(H) = 4(1 + cos(πh))

and

min
1≤j,k≤m

|λj,k(S)| = 0, max
1≤j,k≤m

|λj,k(S)| = 4Re cos(πh).

Therefore, the optimal parameter α̃ that minimizes the upper bound σ(α) of the conver-
gence factor ρ(M(α)) of the HSS iteration method is given by

α̃ ≡ √γminγmax =
√
λminλmax = 4 sin(πh),

see Theorem 2.1.
In Table 1 we list the experimental optimal parameter α (denoted by αexp), the esti-

mated optimal parameter α (denoted by αest) determined by Estimation 5.1, the upper-
bound minimizer α̃, and the corresponding spectral radii ρ(M(α)) of the HSS iteration
matrix M(α) for α = αexp, αest and α̃. From this table we see that α̃ always overestimates
ρ(M(α)) when compared with αest, and that αest yields quite a good approximation to
αexp.

In Table 2 we list the number of iterations (denoted by “IT”) and the elapsed CPU
time in seconds (denoted by “CPU”) of the HSS iteration method when it is applied to
the nonsymmetric positive definite system of linear equations (1.1) with coefficient matrix
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Table 1: α versus ρ(M(α)) when m = 32

δ 10 50 100 500 1000

αexp 0.5195 2.2129 3.5606 12.0063 17.6346

ρ(M(αexp)) 0.7794 0.4414 0.4635 0.6357 0.7161

αest 0.5967 2.7084 5.1536 10.2948 15.0075

ρ(M(αest)) 0.8055 0.4582 0.4771 0.6374 0.7179

α̃ 0.3802 0.3802 0.3802 0.3802 0.3802

ρ(M(α̃)) 0.8312 0.8702 0.8839 0.8999 0.9030

Table 2: IT and CPU when m = 32 and ε = 10−6

δ 10 50 100 500 1000

αexp IT 70 38 36 58 79
CPU 0.7414 0.3905 0.6986 1.1147 1.5510

αest IT 66 44 45 55 72
CPU 0.6842 0.4568 0.9238 1.0780 1.3991

(5.1). From this table we see that the numerical results produced with αest coincide with
those using αexp, and the match is quite pertinent.

Here and in the next example, we choose the right-hand-side vector f such that the
exact solution of the system of linear equations is (1, 1, . . . , 1)T ∈ Rn. In addition, all runs
are initiated from the initial vector x(0) = 0, and terminated if the current iteration satisfy

‖f −Ax(k)‖2
‖f −Ax(0)‖2

≤ ε.

The experiments are run in MATLAB (version 6.1) with a machine precision 10−16. The
machine used is a Pentium-III 500 personal computer with 256M memory.

Then, we use the following example of 2-by-2 block system of linear equations to further
confirm the above observations.

Consider the system of linear equations (1.1) with the coefficient matrix

A =
[

B E
−ET 0.5I

]
, (5.2)

where

B =
[
I ⊗ TH + TH ⊗ I 0

0 I ⊗ TH + TH ⊗ I

]
∈ R2m2×2m2

, (5.3)

E =
[
I ⊗ F
F ⊗ I

]
∈ R2m2×m2

, (5.4)



The Optimal Parameter in HSS Method 19

and

TH = tridiag(−1, 2,−1) ∈ Rm×m, F = δh · tridiag(−1, 1, 0) ∈ Rm×m, (5.5)

with h = 1
m+1 the discretization meshsize, see [4].

For this example, we have r = 2m2 and s = m2. Hence, the total number of variables
is r + s = 3m2.

In Table 3 we list the experimental optimal parameter αexp, the estimated optimal pa-
rameter αest determined by Estimation 5.1, and the corresponding spectral radii ρ(M(α))
of the HSS iteration matrix M(α) for α = αexp and αest. Here, considering Theorem 4.1
and the two-by-two block structure of the matrix A in (5.2), we may apply the equations in
Estimation 5.1 to the q which is either the largest or the smallest singular value (denoted,
respectively, by q1 or qk) of the matrix E, and also consider the two points α =

√
λminλmax

and α =
√
q1qk, to obtain a more accurate estimate to the optimal iteration parameter

for the HSS iteration method. From this table we can see that αest yields quite a good
approximation to αexp.

Table 3: α versus ρ(M(α))

δ 10 100

m 16 24 32 16 24 32

αexp 0.7457 0.5087 0.3849 1.0340 0.6553 0.4639

ρ(M(αexp)) 0.8291 0.8812 0.9090 0.7700 0.8490 0.8912

αest 0.7350 0.5013 0.3802 0.7350 0.5013 0.3802

ρ(M(αest)) 0.8304 0.8816 0.9091 0.8304 0.8816 0.9091

In Table 4 we list the number of iterations and the elapsed CPU time of the HSS
iteration method when it is applied to the 2×2 block system of linear equations (1.1) with
the coefficient matrix (5.2)-(5.5). From this table we can see that the numerical results
produced with αest coincide with those using αexp, and the match is quite pertinent.

Table 4: IT and CPU when ε = 10−6

δ 10 100

m 16 24 32 16 24 32

IT 59 90 117 43 70 97
αexp CPU 0.4416 3.0069 15.2751 0.3531 2.3821 13.3629

IT 60 90 119 60 92 118
αest CPU 0.4250 3.0139 15.2881 0.4617 3.1193 15.6046
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6 Proof of Remark 3.3

Here we give the proof of Remark 3.3.
The assertion concerning λ1 = λ2 and the assertion concerning equation (3.3) can be

readily verified. We consider the equation (3.4) and the reduced equation (3.5). Note
that for α > 0, the right side of (3.4) is nonnegative, and the left side is nonnegative on
the interval [λ2, λ1] only. So, all the positive solutions β = α2 of the equation (3.5) lie in
[λ2

2, λ
2
1]. Define

f(β) = (λ2
1 − β)(β − λ2

2), g1(β) = (β − λ1λ2)2, g2(β) =
(β − q2)2

(β + q2)2
,

g(β) = g1(β)g2(β) and h(β) = f(β)− g(β),

for β > 0. Then β is a positive solution of (3.5) if and only if β is a positive solution of

h(β) = 0.

Obviously, the graph of f(β) is a concave parabola which intersects the β-axis at β = λ2
2

and λ2
1, while the graph of g1(β) is a convex parabola touching the β-axis at β = λ1λ2.

Note that f(β) = g1(β) has two solutions in the intervals [λ2
2, λ1λ2) and ((λ2

1 + λ2
2)/2, λ

2
1].

The graph of g(β) can be obtained from that of g1(β) by reducing the vertical height of
each point by the factor g2(β) ∈ (0, 1). Thus, the solution of f(β) = g1(β) nearer to λ2

2

will move further left to a solution of f(β) = g(β); the solution of f(β) = g1(β) nearer to
λ2

1 will move further right to a solution of f(β) = g(β).
We claim that h(β) cannot have more than 2 positive solutions in [λ2

2, λ
2
1], equivalently,

(3.5) cannot have more than 2 positive solutions in [λ2
2, λ

2
1].

First, we prove the claim if q2 < λ2
2 or q2 > λ2

1. Let p(β) be the polynomial on the left
side of (3.5) divided by 2. Then the product of the roots of (3.5) is the constant term of p(β)
and equals the positive number q4λ2

1λ
2
2. So, if (3.5) have more than 2 positive roots, then it

must have 4 positive roots, say, β1 ≤ β2 ≤ β3 ≤ β4. Suppose p′(β) has zeros β′1 ≤ β′2 ≤ β′3,
p′′(β) has zeros β′′1 ≤ β′′2 , and p′′′(β) has zero β1

′′′. We have β′1 ≤ β′′1 ≤ β′2 ≤ β′′2 ≤ β′3 and
β′′1 ≤ β1

′′′ ≤ β′′2 . Thus,
β′1 ≤ β′′′1 ≤ β′3.

Now, examining the constant terms of the polynomials p′(β)/4 and p′′′(β)/24, we see that

β′1β
′
2β
′
3 = q4(λ1 + λ2)2/8 (6.1)

and β1
′′′ = (λ1 + λ2)2/8. If q2 < λ2

2, then q2 < β1 ≤ β′1 ≤ β′2 and hence

β′1β
′
2β
′
3 > (q2)(q2)(β′′′1 ) = q4(λ1 + λ2)2/8,

which contradicts (6.1). Similarly, if q2 > λ2
1, then q2 > β4 ≥ β′3 ≥ β′2 and hence

β′1β
′
2β
′
3 < β′′′1 (q2)(q2) = q4(λ1 + λ2)2/8,

which again contradicts (6.1). Thus, our claim is proved in these cases.
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Next, we assume that q2 ∈ [λ2
2, λ

2
1]. Then

g(β) =
(β − q2)2(β − λ1λ2)2

(λ2
1 − β)(β − λ2

2)

has two zeros in [λ2
2, λ

2
1], namely, β = q2 and β = λ1λ2.

If λ2
2 ≤ q2 ≤ λ1λ2, then f is increasing on [λ2

2, (λ
2
1 +λ2

2)/2] and q2 ≤ λ1λ2 ≤ (λ2
1 +λ2

2)/2.
So, f is increasing on [λ2

2, q
2]. Since g(β) is decreasing on [λ2

2, q
2], and the function h(β)

have different signs at λ2
2 and q2, it follows that h(β) = 0 has a root in [λ2λ1, q

2]. On
(q2, (λ2

1 + λ2
2)/2], we have f(β) > g1(β) ≥ g1(β)g2(β). Thus, f(β) = g1(β)g2(β) has no

root in this interval. Finally, on the interval [(λ2
1 + λ2

2)/2, λ
2
1], f is decreasing and g(β) is

increasing, and the function h(β) assume nonzero values with different signs at the end
points. Thus, f(β) = g1(β)g2(β) has a root in ((λ2

1 + λ2
2)/2, λ

2
1).

Suppose λ1λ2 < q2 ≤ λ2
1. On [λ2

2, λ1λ2], f is increasing and g(β) is decreasing. More-
over, the function h(β) assume nonzero values with different signs at λ2

2 and λ1λ2, it
follows that h(β) = 0 has a root in (λ2

2, λ1λ2).
Suppose q2 < (λ2

1 + λ2
2)/2. On (λ1λ2, (λ2

1 + λ2
2)/2], we have f(β) > g1(β) ≥ g1(β)g2(β).

Thus, f(β) = g1(β)g2(β) has no root in this interval. On the interval [(λ2
1 + λ2

2)/2, λ
2
1],

f is decreasing and g(β) is increasing, and the function h(β) assume nonzero values with
different signs at the end points. Thus, f(β) = g(β) has a root in ((λ2

1 + λ2
2)/2, λ

2
1).

Finally, if q2 ∈ [(λ2
1 + λ2

2)/2, λ
2
1], then for β ∈ (λ1λ2, q

2) we have

(β − λ1λ2)2/(β + q)2 ∈ (0, 1)

and hence
f(β) > (β − q)2 > g(β).

Thus, f(β) = g(β) has no solution in [(λ2
1 + λ2

2)/2, q
2). Now, on the interval [q2, λ2

1], f
is decreasing and g(β) is increasing, and the function h(β) assume values with different
signs at the end points. Thus, f(β) = g(β) has a root in [q2, λ2

1].
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